Negative Differential Resistance in Carbon-Based Nanostructures

被引:19
作者
Evlashin, S. A. [1 ]
Tarkhov, M. A. [2 ]
Chernodubov, D. A. [3 ]
Inyushkin, A. V. [3 ]
Pilevsky, A. A. [4 ]
Dyakonov, P. V. [1 ,4 ]
Pavlov, A. A. [2 ]
Suetin, N. V. [4 ]
Akhatov, I. S. [1 ]
Perebeinos, V. [5 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Design Mfg & Mat, Moscow 121205, Russia
[2] Russian Acad Sci, Inst Nanotechnol Microelect, Moscow 119991, Russia
[3] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[4] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[5] SUNY Buffalo, Univ Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
关键词
ROOM-TEMPERATURE; CURRENT-DENSITY; CONDUCTANCE; NANOWALLS; HETEROSTRUCTURES; OSCILLATIONS; TRANSITION; HEAT;
D O I
10.1103/PhysRevApplied.15.054057
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices over the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphenelike nanostructures up to 37 K and high on-current density up to 105 A/cm2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of two- and three-dimensional material-based devices via heat management in the conducting films and the underlying substrates.
引用
收藏
页数:10
相关论文
共 71 条
[1]   Current-controlled negative differential resistance due to Joule heating in TiO2 [J].
Alexandrov, A. S. ;
Bratkovsky, A. M. ;
Bridle, B. ;
Savel'ev, S. E. ;
Strukov, D. B. ;
Williams, R. Stanley .
APPLIED PHYSICS LETTERS, 2011, 99 (20)
[2]   Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects [J].
An, Yipeng ;
Yang, Zhongqin .
APPLIED PHYSICS LETTERS, 2011, 99 (19)
[3]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[4]  
Balkan N., 1993, NATO ASI SERIES COLC
[5]  
Berger P. R., 2011, COMPREHENSIVE SEMICO, V1-6, P176
[6]   Fast Spiking of a Mott VO2-Carbon Nanotube Composite Device [J].
Bohaichuk, Stephanie M. ;
Kumar, Suhas ;
Pitner, Greg ;
McClellan, Connor J. ;
Jeong, Jaewoo ;
Samant, Mahesh G. ;
Wong, H-S. Philip ;
Parkin, Stuart S. P. ;
Williams, R. Stanley ;
Pop, Eric .
NANO LETTERS, 2019, 19 (10) :6751-6755
[7]   Resonant tunnelling and negative differential conductance in graphene transistors [J].
Britnell, L. ;
Gorbachev, R. V. ;
Geim, A. K. ;
Ponomarenko, L. A. ;
Mishchenko, A. ;
Greenaway, M. T. ;
Fromhold, T. M. ;
Novoselov, K. S. ;
Eaves, L. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures [J].
Burg, G. William ;
Prasad, Nitin ;
Fallahazad, Babak ;
Valsaraj, Amithraj ;
Kim, Kyounghwan ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Wang, Qingxiao ;
Kim, Moon J. ;
Register, Leonard F. ;
Tutuc, Emanuel .
NANO LETTERS, 2017, 17 (06) :3919-3925
[9]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[10]   Abrupt metal-insulator transition observed in VO2 thin films induced by a switching voltage pulse [J].
Chae, BG ;
Kim, HT ;
Youn, DH ;
Kang, KY .
PHYSICA B-CONDENSED MATTER, 2005, 369 (1-4) :76-80