Characterization of joint spectral radius via trace

被引:22
作者
Chen, QD
Zhou, XL [1 ]
机构
[1] Univ Duisburg, Dept Math, D-47057 Duisburg, Germany
[2] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
关键词
joint spectral radius; finiteness conjecture; trace; two-scale dilation equation; wavelet;
D O I
10.1016/S0024-3795(00)00149-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The joint spectral radius for a bounded collection of the square matrices with complex entries and of the same size is characterized by the trace of matrices. This characterization allows us to give some estimates concerning the computation of the joint spectral radius. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 18 条
[1]  
Barnsley M. F., 2014, Fractals Everywhere
[2]   RECURRENT ITERATED FUNCTION SYSTEMS [J].
BARNSLEY, MF ;
ELTON, JH ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :3-31
[3]   BOUNDED SEMIGROUPS OF MATRICES [J].
BERGER, MA ;
WANG, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 166 :21-27
[4]  
COHEN A, 1990, ANN I H POINCARE-AN, V7, P57
[5]   THE CHARACTERIZATION OF CONTINUOUS, 4-COEFFICIENT SCALING FUNCTIONS AND WAVELETS [J].
COLELLA, D ;
HEIL, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :876-881
[6]   CHARACTERIZATIONS OF SCALING FUNCTIONS - CONTINUOUS SOLUTIONS [J].
COLELLA, D ;
HEIL, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) :496-518
[7]   SETS OF MATRICES ALL INFINITE PRODUCTS OF WHICH CONVERGE [J].
DAUBECHIES, I ;
LAGARIAS, JC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 161 :227-263
[8]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[9]  
GANTMACHER FR, 1971, THEORY MATRICES, V2
[10]  
GOODRICK GK, 1994, MED EXERCISE NUTR HL, V3, P335