An Entire Function with Simply and Multiply Connected Wandering Domains

被引:0
|
作者
Bergweiler, Walter [1 ]
机构
[1] Univ Kiel, D-24098 Kiel, Germany
关键词
ITERATION; FATOU;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We modify a construction of Kisaka and Shishikura to show that there exists an entire function f which has both a simply connected and a multiply connected wandering domain. Moreover, these domains are contained in the set A(f) consisting of the points where the iterates of f tend to infinity fast. The results answer questions by Rippon and Stallard.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [1] Multiply connected wandering domains of entire functions
    Bergweiler, Walter
    Rippon, Philip J.
    Stallard, Gwyneth M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1261 - 1301
  • [2] Permutable entire functions and multiply connected wandering domains
    Benini, Anna Miriam
    Rippon, Philip J.
    Stallard, Gwyneth M.
    ADVANCES IN MATHEMATICS, 2016, 287 : 451 - 462
  • [3] Julia Components of Transcendental Entire Functions with Multiply-Connected Wandering Domains
    Kisaka, Masashi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [4] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [5] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [6] Classifying simply connected wandering domains
    Benini, Anna Miriam
    Evdoridou, Vasiliki
    Fagella, Nuria
    Rippon, Philip J.
    Stallard, Gwyneth M.
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1127 - 1178
  • [7] On the geometry of simply connected wandering domains
    Thaler, Luka Boc
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1663 - 1673
  • [8] On multiply connected wandering domains of meromorphic functions
    Rippon, P. J.
    Stallard, G. M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 405 - 423
  • [9] ON THE UNIFORM PERFECTNESS OF THE BOUNDARY OF MULTIPLY CONNECTED WANDERING DOMAINS
    Bergweiler, Walter
    Zheng, Jian-Hua
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (03) : 289 - 311
  • [10] ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED DOMAINS UNDER ENTIRE FUNCTIONS
    Rempe-Gillen, Lasse
    Sixsmith, Dave
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (05) : 1579 - 1615