Two-part quantile regression models for semi-continuous longitudinal data: A finite mixture approach

被引:8
作者
Merlo, Luca [1 ]
Maruotti, Antonello [2 ,3 ]
Petrella, Lea [4 ]
机构
[1] Sapienza Univ Rome, Dept Stat Sci, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Bergen, Dept Math, Bergen, Norway
[3] LUMSA Univ, Dept Law Econ Polit Sci & Modern Languages, Rome, Italy
[4] Sapienza Univ Rome, MEMOTEF Dept, Rome, Italy
关键词
correlated random effect models; LASSO; Nonparametric ML estimation; quantile regression mixture models; semi-continuous longitudinal data; two-part models; ZERO-MODIFIED COUNT; HEALTH-CARE; CONDITIONAL QUANTILES; DEMAND; INSURANCE; SELECTION; SURVIVAL;
D O I
10.1177/1471082X21993603
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a two-part finite mixture quantile regression model for semi-continuous longitudinal data. The proposed methodology allows heterogeneity sources that influence the model for the binary response variable to also influence the distribution of the positive outcomes. As is common in the quantile regression literature, estimation and inference on the model parameters are based on the asymmetric Laplace distribution. Maximum likelihood estimates are obtained through the EM algorithm without parametric assumptions on the random effects distribution. In addition, a penalized version of the EM algorithm is presented to tackle the problem of variable selection. The proposed statistical method is applied to the well-known RAND Health Insurance Experiment dataset which gives further insights on its empirical behaviour.
引用
收藏
页码:485 / 508
页数:24
相关论文
共 71 条
  • [1] Regression models for binary longitudinal responses
    Aitkin, M
    Alfó, M
    [J]. STATISTICS AND COMPUTING, 1998, 8 (04) : 289 - 307
  • [2] Longitudinal analysis of repeated binary data using autoregressive and random effect modelling
    Aitkin, M
    Alfò, M
    [J]. STATISTICAL MODELLING, 2003, 3 (04) : 291 - 303
  • [3] Random coefficient models for binary longitudinal responses with attrition
    Alfò, M
    Aitkin, M
    [J]. STATISTICS AND COMPUTING, 2000, 10 (04) : 279 - 287
  • [4] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    [J]. STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [5] Two-part regression models for longitudinal zero-inflated count data
    Alfo, Marco
    Maruotti, Antonello
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (02): : 197 - 216
  • [6] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    [J]. STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [7] Bassett G.W., 2002, PORTFOLIO STYLE RETU, P293, DOI DOI 10.1007/978-3-662-11592-315
  • [8] Issues for the Next Generation of Health Care Cost Analyses
    Basu, Anirban
    Manning, Willard G.
    [J]. MEDICAL CARE, 2009, 47 (07) : S109 - S114
  • [9] Modelling semi-continuous data using mixture regression models with an application to cattle production yields
    Belasco, E. J.
    Ghosh, S. K.
    [J]. JOURNAL OF AGRICULTURAL SCIENCE, 2012, 150 : 109 - 121
  • [10] twopm: Two-part models
    Belotti, Federico
    Deb, Partha
    Manning, Willard G.
    Norton, Edward C.
    [J]. STATA JOURNAL, 2015, 15 (01) : 3 - 20