Quarter-regular biembeddings of Latin squares

被引:5
作者
Donovan, D. M. [2 ]
Drapal, A. [3 ]
Grannell, M. J. [1 ]
Griggs, T. S.
Lefevre, J. G. [2 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[2] Univ Queensland, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
[3] Charles Univ Prague, Fac Math & Phys, Prague 8, Czech Republic
基金
澳大利亚研究理事会;
关键词
Biembedding; Latin square; Orientable surface; Regular embedding; Transversal design; COMPLETE TRIPARTITE GRAPHS;
D O I
10.1016/j.disc.2009.08.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply a recursive construction for biembeddings of Latin squares to produce a new infinite family of biembeddings of cyclic Latin squares of even side having a high degree of symmetry. Reapplication of the construction yields two further classes of biembeddings. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:692 / 699
页数:8
相关论文
共 5 条
[1]  
ARCHDEACON D, 1996, C NUMER, V115, P5
[2]   Triangulations of orientable surfaces by complete tripartite graphs [J].
Grannell, MJ ;
Griggs, TS ;
Knor, M ;
Sirán, J .
DISCRETE MATHEMATICS, 2006, 306 (06) :600-606
[3]   Biembeddings of Latin squares and Hamiltonian decompositions [J].
Grannell, MJ ;
Griggs, TS ;
Knor, M .
GLASGOW MATHEMATICAL JOURNAL, 2004, 46 :443-457
[4]  
GRANNELL MJ, 2007, LONDON MATH SOC LECT, V346, P121
[5]   GENUS EMBEDDINGS FOR SOME COMPLETE TRIPARTITE GRAPHS [J].
STAHL, S ;
WHITE, AT .
DISCRETE MATHEMATICS, 1976, 14 (03) :279-296