On the infinitesimal isometric deformations of submanifolds

被引:0
作者
Chen, XY
Yang, WM
机构
[1] Chongqing Inst Ind & Management, Chongqing 630050, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
关键词
infinitesimal isometric deformation; mean curvature; Gauss-Kronecker curvature; sectional curvature;
D O I
10.1016/S0252-9602(17)30858-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the infinitesimal I- and Il-isometry deformations of submanifolds immersed in a space form N of constant curvature. We obtain some results which are new even in the case of N being the Euclidean space. At the same time, we generalize some classical results in E-3 Go the submanifolds immersed in a space form of constant curvature.
引用
收藏
页码:392 / 404
页数:13
相关论文
共 50 条
  • [31] On mean curvatures in submanifolds geometry
    Ge JianQuan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (06): : 1127 - 1134
  • [32] CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS
    Furuhata, Hitoshi
    Hasegawa, Izumi
    Satoh, Naoto
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (03): : 851 - 864
  • [33] Proper biharmonic submanifolds in a sphere
    Wang, Xian Feng
    Wu, Lan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (01) : 205 - 218
  • [34] On willmore's inequality for submanifolds
    Zhou, Jiazu
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 474 - 480
  • [35] Some inequalities on totally real submanifolds in locally conformal Kaehler space forms
    Carriazo, A
    Kim, YH
    Yoon, DW
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 795 - 808
  • [36] Rigidity of Minimal Submanifolds in Space Forms
    Chen, Hang
    Wei, Guofang
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) : 4923 - 4933
  • [37] Submanifolds, isoperimetric inequalities and optimal transportation
    Castillon, Philippe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) : 79 - 103
  • [38] PROPER BIHARMONIC SUBMANIFOLDS IN A UNIT SPHERE
    Zhu, Tianmin
    Shu, Shichang
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (03): : 13 - 24
  • [39] Biharmonic Submanifolds in δ-Pinched Riemannian Manifolds
    Jian Cheng LIU1
    2.Department of Mathematics
    Journal of Mathematical Research with Applications, 2010, (05) : 891 - 896
  • [40] Spherical rigidities of submanifolds in Euclidean spaces
    Cheng, QM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) : 475 - 487