On the infinitesimal isometric deformations of submanifolds

被引:0
|
作者
Chen, XY
Yang, WM
机构
[1] Chongqing Inst Ind & Management, Chongqing 630050, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
关键词
infinitesimal isometric deformation; mean curvature; Gauss-Kronecker curvature; sectional curvature;
D O I
10.1016/S0252-9602(17)30858-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the infinitesimal I- and Il-isometry deformations of submanifolds immersed in a space form N of constant curvature. We obtain some results which are new even in the case of N being the Euclidean space. At the same time, we generalize some classical results in E-3 Go the submanifolds immersed in a space form of constant curvature.
引用
收藏
页码:392 / 404
页数:13
相关论文
共 50 条
  • [21] Characterizations of linear Weingarten submanifolds
    de Lima, Henrique F.
    dos Santos, Fabio R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 : 176 - 188
  • [22] On mean curvatures in submanifolds geometry
    JianQuan Ge
    Science in China Series A: Mathematics, 2008, 51
  • [23] On mean curvatures in submanifolds geometry
    Ge JianQuan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (06): : 1127 - 1134
  • [24] Submanifolds with flat normal bundle
    Zheng, YF
    GEOMETRIAE DEDICATA, 1997, 67 (03) : 295 - 300
  • [25] Biharmonic PNMC submanifolds in spheres
    Balmus, Adina
    Montaldo, Stefano
    Oniciuc, Cezar
    ARKIV FOR MATEMATIK, 2013, 51 (02): : 197 - 221
  • [26] Geometric properties of normal submanifolds
    Josué Meléndez
    Mario Hernández
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 1273 - 1288
  • [27] Homology vanishing theorems for submanifolds
    Vlachos, Theodoros
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2607 - 2617
  • [28] Rotational submanifolds in Euclidean spaces
    Arslan, Kadri
    Bayram, Bengu
    Bulca, Betul
    Ozturk, Gunay
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (02)
  • [29] COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE
    Shu, Shichang
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (04): : 135 - 151
  • [30] Submanifolds with Flat Normal Bundle
    YONGFAN Zheng
    Geometriae Dedicata, 1997, 67 : 295 - 300