Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems

被引:47
作者
Rego, Brenner S. [1 ]
Raffo, Guilherme V. [1 ,2 ]
Scott, Joseph K. [3 ]
Raimondo, Davide M. [4 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[3] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC USA
[4] Univ Pavia, Dept Elect Comp & Biomed Engn, Pavia, Italy
基金
巴西圣保罗研究基金会;
关键词
Nonlinear state estimation; Set-based computing; Reachability analysis; Convex polytopes; PARAMETER; IDENTIFICATION; COMPUTATION; OBSERVERS;
D O I
10.1016/j.automatica.2019.108614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents new methods for set-valued state estimation of nonlinear discrete-time systems with unknown-but-bounded uncertainties. A single time step involves propagating an enclosure of the system states through the nonlinear dynamics (prediction), and then enclosing the intersection of this set with a bounded-error measurement (update). When these enclosures are represented by simple sets such as intervals, ellipsoids, parallelotopes, and zonotopes, certain set operations can be very conservative. Yet, using general convex polytopes is much more computationally demanding. To address this, we present in this paper two new methods, a mean value extension and a first-order Taylor extension, for efficiently propagating constrained zonotopes through nonlinear mappings. These extend existing methods for zonotopes in a consistent way. Examples show that these extensions yield tighter prediction enclosures than zonotopic estimation methods, while largely retaining the computational benefits of zonotopes. Moreover, they enable tighter update enclosures because constrained zonotopes can represent intersections much more accurately than zonotopes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] A set-membership state estimation algorithm based on DC programming
    Alamo, T.
    Bravo, J. M.
    Redondo, M. J.
    Camacho, E. F.
    [J]. AUTOMATICA, 2008, 44 (01) : 216 - 224
  • [2] Guaranteed state estimation by zonotopes
    Alamo, T
    Bravo, JM
    Camacho, EF
    [J]. AUTOMATICA, 2005, 41 (06) : 1035 - 1043
  • [3] Althoff M., 2013, P INT C HYBR SYST CO, P173
  • [4] Althoff M, 2011, IEEE DECIS CONTR P, P6814, DOI 10.1109/CDC.2011.6160872
  • [5] Ben Chabane S, 2014, 2014 EUROPEAN CONTROL CONFERENCE (ECC), P993, DOI 10.1109/ECC.2014.6862412
  • [6] Boyd S.P, 2004, CONVEX OPTIMIZATION, DOI 10.1017/CBO9780511804441
  • [7] Bounded error identification of systems with time-varying parameters
    Bravo, J. M.
    Alamo, T.
    Camacho, E. F.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) : 1144 - 1150
  • [8] Recursive state bounding by parallelotopes
    Chisci, L
    Garulli, A
    Zappa, G
    [J]. AUTOMATICA, 1996, 32 (07) : 1049 - 1055
  • [9] Combastel C, 2005, IEEE DECIS CONTR P, P7228
  • [10] Combastel C., 2015, IFAC - Papers Online, V48, P289, DOI 10.1016/j.ifacol.2015.09.542