Quantum anomalous Hall effect by coupling heavy atomic layers with CrI3

被引:15
作者
Rehman, Majeed Ur [1 ,2 ]
Dong, Xinlong [1 ,2 ,3 ,4 ]
Hou, Tao [1 ,2 ]
Li, Zeyu [1 ,2 ]
Qi, Shifei [1 ,2 ,5 ]
Qiao, Zhenhua [1 ,2 ]
机构
[1] Univ Sci & Technol China, ICQD, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Shanxi Normal Univ, Coll Phys & Informat Engn, Linfen 041004, Shanxi, Peoples R China
[4] Shanxi Normal Univ, Res Inst Mat Sci, Linfen 041004, Shanxi, Peoples R China
[5] Hebei Normal Univ, Dept Phys, Shijiazhuang 050024, Hebei, Peoples R China
关键词
CRYSTAL; FERROMAGNETISM;
D O I
10.1103/PhysRevB.100.195422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We explored the possibility of realizing quantum anomalous Hall effect by placing a heavy-element atomic layer on top of monolayer CrI3 with a natural cleavage surface and broken time-reversal symmetry. We showed that CrI3/X (X = Bi, Sb, or As) systems can open up a sizable bulk gap to harbor a quantum anomalous Hall effect; e.g., CrI3/Bi is a natural magnetic insulator with a bulk gap of 30 meV, which can be further enlarged via strain engineering or adjusting spin orientations. We also found that the ferromagnetic properties (magnetic anisotropic energy and Curie temperature) of pristine CrI3 can be further improved due to the presence of heavy atomic layers, and the spin orientation can be utilized as a useful knob to tune the band structure and Fermi level of the CrI3/Bi system. The topological nature, together with the enhanced ferromagnetism, can unlock potential applications for CrI3-based materials in spintronics and electronics.
引用
收藏
页数:5
相关论文
共 56 条
  • [1] [Anonymous], ARXIV190411468
  • [2] Phonons and related crystal properties from density-functional perturbation theory
    Baroni, S
    de Gironcoli, S
    Dal Corso, A
    Giannozzi, P
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (02) : 515 - 562
  • [3] Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field
    Bestwick, A. J.
    Fox, E. J.
    Kou, Xufeng
    Pan, Lei
    Wang, Kang L.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (18)
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
    Chang, Cui-Zu
    Zhang, Jinsong
    Feng, Xiao
    Shen, Jie
    Zhang, Zuocheng
    Guo, Minghua
    Li, Kang
    Ou, Yunbo
    Wei, Pang
    Wang, Li-Li
    Ji, Zhong-Qing
    Feng, Yang
    Ji, Shuaihua
    Chen, Xi
    Jia, Jinfeng
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    He, Ke
    Wang, Yayu
    Lu, Li
    Ma, Xu-Cun
    Xue, Qi-Kun
    [J]. SCIENCE, 2013, 340 (6129) : 167 - 170
  • [6] Deng X., 2017, PHYS REV B, V95, DOI DOI 10.1103/PHYSREVB.95.121410
  • [7] Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms
    Deng, Xinzhou
    Yang, Hualing
    Qi, Shifei
    Xu, Xiaohong
    Qiao, Zhenhua
    [J]. FRONTIERS OF PHYSICS, 2018, 13 (05)
  • [8] Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study
    Ding, Jun
    Qiao, Zhenhua
    Feng, Wanxiang
    Yao, Yugui
    Niu, Qian
    [J]. PHYSICAL REVIEW B, 2011, 84 (19)
  • [9] Chern Insulators from Heavy Atoms on Magnetic Substrates
    Garrity, Kevin F.
    Vanderbilt, David
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [10] Topological Materials: Quantum Anomalous Hall System
    He, Ke
    Wang, Yayu
    Xue, Qi-Kun
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 : 329 - 344