A characterization for *-isomorphisms in an indefinite inner product space

被引:0
作者
Sivakumar, K. C. [1 ]
Kamaraj, K.
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Tagore Engn Coll, Dept Math, Madras 600048, Tamil Nadu, India
关键词
indefinite inner product; *-isomorphism;
D O I
10.1016/j.jmaa.2006.06.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-1 and H-2 be indefinite inner product spaces. Let L (H-1) and L(H-2) be the sets of all linear operators on H-1 and H-2, respectively. The following result is proved: If phi is [*]-isomorphism from L(H-1) onto L(H-2) then there exists U: H1 -> H-2 such that phi(T) = cUTU([*]) for all T epsilon L(H-1) with UU[*] = cI(2), (UU)-U-[*] = cI(1) and c = +/- 1. Here I-1 and I-2 denote the identity maps on H-1 and H-2, respectively. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1139 / 1144
页数:6
相关论文
共 2 条
[1]  
[Anonymous], 1976, INVITATION C ALGEBRA
[2]   An elementary proof for a characterization of *-isomorphisms [J].
Kulkarni, SH ;
Nair, MT ;
Namboodiri, MNN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :229-234