A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems

被引:15
作者
Adams, L [1 ]
Chartier, TP
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
immersed interface problems; algebraic multigrid; geometric multigrid; discontinuous coefficients; maximum principle preserving schemes; M-matrices;
D O I
10.1137/S1064827503425262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 ( 2002), pp. 463-479], a multigrid method was designed specifically for interface problems that have been discretized using the methods described in [ L. Adams and Z. Li, SIAM J. Sci. Comput., 24 ( 2002), pp. 463-479] and in [ Z. Li and K. Ito, SIAM J. Sci. Comput., 23 ( 2001), pp. 339-361] for elliptic interface problems using the maximum principle preserving schemes. In [ L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 ( 2002), pp. 1516-1533], a new method was introduced that utilizes a new interpolator for grid points near the immersed interface and a new restrictor that guarantees the coarse-grid matrices are M-matrices. This paper compares the immersed interface multigrid methods introduced in [ L. Adams and Z. Li, SIAM J. Sci. Comput., 24 ( 2002), pp. 463-479] and [ L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 (2002), pp. 1516-1533] with algebraic multigrid, which uses no geometric information to set up the multigrid components for coarse-grid correction. We show that algebraic multigrid is a robust solver for our test problems. It outperforms the method in [ L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463-479] and performs nearly as well as the method in [ L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 ( 2002), pp. 1516-1533] which is shown to be the most efficient for all problem parameters and sizes.
引用
收藏
页码:762 / 784
页数:23
相关论文
共 14 条
[1]   New geometric immersed interface multigrid solvers [J].
Adams, L ;
Chartier, TP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1516-1533
[2]   The immersed interface/multigrid methods for interface problems [J].
Adams, L ;
Li, ZL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :463-479
[3]  
ANTONELLI MJ, 2004, INT J PURE APPL MATH, V10, P365
[4]  
Antoniou I, 2003, INT SOC ANAL APP COM, V10, P1
[5]  
BRANDT A, 1986, APPL MATH COMPUT, V19, P23, DOI 10.1016/0096-3003(86)90095-0
[6]  
Brandt A., 1982, Report
[7]  
Briggs W.L., 2000, A Multigrid Tutorial
[8]   Robustness and scalability of algebraic multigrid [J].
Cleary, AJ ;
Falgout, RD ;
Henson, VE ;
Jones, JE ;
Manteuffel, TA ;
McCormick, SF ;
Miranda, GN ;
Ruge, JW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1886-1908
[9]  
DENDY J, 1982, J COMPUT PHYS, V48, P336
[10]   MATRIX-DEPENDENT PROLONGATIONS AND RESTRICTIONS IN A BLACKBOX MULTIGRID SOLVER [J].
DEZEEUW, PM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (01) :1-27