On the beam shape coefficients of fundamental nondiffracting beams

被引:10
作者
Chafiq, A. [1 ,2 ]
Gouesbet, G. [3 ,4 ]
Belafhal, A. [1 ]
机构
[1] Chouaib Doukkali Univ, Lab LPNAMME, Laser Phys Grp, Dept Phys,Fac Sci, PB 20, El Jadida 24000, Morocco
[2] CRMEF Marrakech Safi Annexe Safi, Safi 46000, Morocco
[3] Univ St Etienne du Rouvray, UMR 6614, CORIA, CNRS, Site Madrillet,Ave Univ,BP12, F-76801 St Etienne Du Rouvray, France
[4] INSA Rouen, Site Madrillet,Ave Univ,BP12, F-76801 St Etienne Du Rouvray, France
关键词
Generalized Lorenz-Mie theory; Beam shape coefficients; Nondiffracting beams; Cosine beams; Higher order Bessel beams; Mathieu beams; Parabolic beams; Helmholtz equation; LORENZ-MIE THEORY; INTEGRAL LOCALIZED APPROXIMATION; SYMMETRIC BESSEL BEAMS; VECTOR FROZEN WAVES; MULTIPOLE EXPANSION; LIGHT-SCATTERING; OPTICAL-FIELDS; MATHIEU BEAMS; ORDER; GENERATION;
D O I
10.1016/j.jqsrt.2019.106750
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In generalized Lorenz-Mie theory (GLMT) applied to structured beams the evaluation of beam shape coefficients (BSCs) constitutes a challenge. In this paper, we propose to calculate BSCs of fundamental nondiffracting beams, cosine beams, Bessel beams, Mathieu beams and parabolic beams. The aim of our method is the use of the Whittaker integral related to a scalar nondiffracting beam, and well known angular spectrum decomposition. Also, we exploit the relationship between solutions of scalar Helmholtz equation to expand the BSCs of nondiffracting beams in terms of higher order Bessel Beams (HOBB) BSCs. Some numerical simulations and discussions are given to validate our results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 69 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, V55
[2]   On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces [J].
Ambrosio, Leonardo A. ;
Wang, Jiajie ;
Gouesbet, Gerard .
APPLIED OPTICS, 2017, 56 (19) :5377-5387
[3]   Millimeter-structured nondiffracting surface beams [J].
Ambrosio, Leonardo Andre .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (03) :638-645
[4]   Zeroth-order continuous vector frozen waves for light scattering: exact multiple expansion in the generalized Lorenz-Mie theory [J].
Ambrosio, Leonardo Andre ;
Rached, Michel Zamboni ;
Gouesbet, Gerard .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (01) :81-89
[5]   Assessing the validity of the localized approximation for discrete superpositions of Bessel beams [J].
Ambrosio, Leonardo Andre ;
Machado Vott, Lutz Felipe ;
Gouesbet, Gerard ;
Wang, Jiajie .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (11) :2690-2698
[6]   On localized approximations for Laguerre-Gauss beams focused by a lens [J].
Ambrosio, Leonardo Andre ;
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 218 :100-114
[7]   Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal, and radial polarizations [J].
Ambrosio, Leonardo Andre ;
Rached, Michel Zamboni ;
Gouesbet, Gerard .
APPLIED OPTICS, 2018, 57 (12) :3293-3300
[8]  
[Anonymous], 2011, PHYS CHEM NEWS
[9]  
[Anonymous], 2006, Electromagnetic Theory
[10]  
[Anonymous], 2014, Electromagnetic scattering by particles and particle groups: an introduction