On variable-step methods for the numerical solution of Schrodinger equation and related problems

被引:9
作者
Avdelas, G
Simos, TE
机构
[1] Tech Univ Greece, Lab Appl Math & Comp, Dept Sci, Chania 73100, Crete, Greece
[2] Democritus Univ Thrace, Sect Math, Sch Engn, Dept Civil Engn, GR-67100 Xanthi, Greece
来源
COMPUTERS & CHEMISTRY | 2001年 / 25卷 / 01期
关键词
Schrodinger equation; wave equation; phase-lag; variable-step methods; error control; coupled differential equations; scattering problems;
D O I
10.1016/S0097-8485(00)00085-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we present a review for the construction of variable-step methods for the numerical integration of the Schrodinger equation. Phase-lag and stability are investigated. The methods are variable-step because of a simple natural error control mechanism. Numerical results obtained for coupled differential equations arising from the Schrodinger equation and for the wave equation show the validity of the approach presented. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 32 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102
[3]   A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :345-358
[4]  
AVDELAS G, IN PRESS J MATH CHEM
[5]  
BERSTEIN RB, 1963, P ROY SOC LOND A MAT, V274, P427
[6]  
BERSTEIN RB, 1960, J CHEM PHYS, V33, P795
[7]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[8]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[10]   (EXTENDED) NUMEROV METHOD FOR COMPUTING EIGENVALUES OF SPECIFIC SCHRODINGER-EQUATIONS [J].
FACK, V ;
VANDENBERGHE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4153-4160