Most automorphisms of a hyperbolic group have very simple dynamics

被引:61
作者
Levitt, G [1 ]
Lustig, M
机构
[1] Univ Toulouse 3, UMR CNRS 5580, Lab Emile Picard, F-31062 Toulouse 4, France
[2] Univ Aix Marseille 3, Lab Math Fondamentale & Appl, F-13397 Marseille, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2000年 / 33卷 / 04期
关键词
D O I
10.1016/S0012-9593(00)00120-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G br a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank;). We show that, for "most" automorphisms a of G (in a precise sense), there exist distinct elements X+, X- the Gromov boundary partial derivative G of G such that lim(n-->+infinity) alpha(+/-n) (g) = X+/- for every g epsilon G which is not periodic under alpha. This follows from the fact that the homeomorphism partial derivative alpha induced on partial derivative G has North-South (loxodromic) dynamics. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:507 / 517
页数:11
相关论文
共 23 条
[1]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[2]  
BESTVINA M, UNPUB BOUNDING COMPL
[3]   ON THE DYNAMICS AND THE FIXED SUBGROUP OF A FREE GROUP AUTOMORPHISM [J].
COHEN, MM ;
LUSTIG, M .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :613-638
[4]  
COORNAERT M, 1990, LECT NOTES, V1441
[5]  
CULLER M, 1987, P LOND MATH SOC, V55, P571
[6]  
CURTILLET JC, 1997, THESIS BOCHUM
[7]   Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two [J].
Dicks, W ;
Llibre, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (05) :1583-1591
[8]   An index for counting fixed points of automorphisms of free groups [J].
Gaboriau, D ;
Jaeger, A ;
Levitt, G ;
Lustig, M .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (03) :425-452
[9]  
GABORIAU D, 1995, ANN SCI ECOLE NORM S, V28, P549
[10]  
Ghys E., 1990, PROGR MATH, V83