Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis)

被引:48
|
作者
Pan, Feng [1 ]
Wang, Yue [1 ]
Liu, Huanglong [1 ]
Wu, Min [2 ]
Chu, Wenyuan [1 ]
Chen, Danmei [1 ]
Xiang, Yan [1 ,2 ]
机构
[1] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Key Lab Crop Biol Anhui Prov, Hefei 230036, Peoples R China
来源
BMC GENOMICS | 2017年 / 18卷
基金
中国国家自然科学基金;
关键词
Moso bamboo; SPL genes; Transcription factor; Expression patterns; BOX GENE; ARABIDOPSIS-THALIANA; MOLECULAR CHARACTERIZATION; DIFFERENTIAL EXPRESSION; PHYLOGENETIC ANALYSIS; FUNCTIONAL-ANALYSIS; FAMILY; PROTEIN; GENERATION; REGULATOR;
D O I
10.1186/s12864-017-3882-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. Results: We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event similar to 15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. Conclusions: The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis)
    Feng Pan
    Yue Wang
    Huanglong Liu
    Min Wu
    Wenyuan Chu
    Danmei Chen
    Yan Xiang
    BMC Genomics, 18
  • [2] Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis)
    Bin Huang
    Zhinuo Huang
    Ruifang Ma
    Muthusamy Ramakrishnan
    Jialu Chen
    Zhijun Zhang
    Kim Yrjälä
    BMC Plant Biology, 21
  • [3] Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis)
    Huang, Bin
    Huang, Zhinuo
    Ma, Ruifang
    Ramakrishnan, Muthusamy
    Chen, Jialu
    Zhang, Zhijun
    Yrjala, Kim
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [4] Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)
    Yang, Kebin
    Li, Ying
    Wang, Sining
    Xu, Xiurong
    Sun, Huayu
    Zhao, Hansheng
    Li, Xueping
    Gao, Zhimin
    PEERJ, 2019, 6
  • [5] Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo (Phyllostachys edulis)
    Pan, Feng
    Wu, Min
    Hu, Wenfang
    Liu, Rui
    Yan, Hanwei
    Xiang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
  • [6] TCP Transcription Factors in Moso Bamboo (Phyllostachys edulis): Genome-Wide Identification and Expression Analysis
    Liu, Huan-Long
    Ww, Min
    Li, Fei
    Gao, Ya-Meng
    Chen, Feng
    Xiang, Yan
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [7] Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis)
    Wu, Ruihua
    Guo, Lin
    Wang, Ruoyu
    Zhang, Qian
    Yao, Hongjun
    MOLECULES, 2022, 27 (17):
  • [8] Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)
    Huang, Bin
    Huang, Zhinuo
    Ma, Ruifang
    Chen, Jialu
    Zhang, Zhijun
    Yrjala, Kim
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)
    Bin Huang
    Zhinuo Huang
    Ruifang Ma
    Jialu Chen
    Zhijun Zhang
    Kim Yrjälä
    Scientific Reports, 11
  • [10] Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo (Phyllostachys edulis)
    Zheng, Wenqing
    Zhang, Yuan
    Zhang, Qian
    Wu, Ruihua
    Wang, Xinwei
    Feng, Shengnian
    Chen, Shaoliang
    Lu, Cunfu
    Du, Liang
    FRONTIERS IN PLANT SCIENCE, 2020, 11