Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components

被引:62
作者
Coron, Jean-Michel [1 ,2 ]
Lissy, Pierre [2 ]
机构
[1] Univ Paris 06, Inst Univ France, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] Univ Paris 06, Sorbonne Univ, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
EQUATIONS;
D O I
10.1007/s00222-014-0512-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a local null controllability result for the three-dimensional Navier-Stokes equations on a (smooth) bounded domain of R-3 with null Dirichlet boundary conditions. The control is distributed in an arbitrarily small nonempty open subset and has two vanishing components. Lions and Zuazua proved that the linearized system is not necessarily null controllable even if the control is distributed on the entire domain, hence the standard linearization method fails. We use the return method together with a new algebraic method inspired by the works of Gromov and previous results by Gueye.
引用
收藏
页码:833 / 880
页数:48
相关论文
共 28 条
[1]   Indirect controllability of locally coupled wave-type systems and applications [J].
Alabau-Boussouira, Fatiha ;
Leautaud, Matthieu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (05) :544-576
[2]  
Alexeev V.M., 1987, Optimal Control
[3]   The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials [J].
Ammar-Khodja, F. ;
Benabdallah, A. ;
Gonzalez-Burgos, M. ;
de Teresa, L. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (06) :555-590
[4]   RECENT RESULTS ON THE CONTROLLABILITY OF LINEAR COUPLED PARABOLIC PROBLEMS: A SURVEY [J].
Ammar-Khodja, Farid ;
Benabdallah, Assia ;
Gonzalez-Burgos, Manuel ;
de Teresa, Luz .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (03) :267-306
[5]  
[Anonymous], 2007, Mathematical Surveys and Monographs
[6]  
[Anonymous], 1996, ESAIM CONTR OPTIM CA, DOI DOI 10.1051/COCV:1996102
[7]   Local Null Controllability of the N-Dimensional Navier-Stokes System with N-1 Scalar Controls in an Arbitrary Control Domain [J].
Carreno, N. ;
Guerrero, S. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (01) :139-153
[8]   Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component [J].
Coron, Jean-Michel ;
Guerrero, Sergio .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (05) :528-545
[9]   Null controllability of the N-dimensional Stokes system with N-1 scalar controls [J].
Coron, Jean-Michel ;
Guerrero, Sergio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) :2908-2921
[10]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312