A Patient-Specific Computational Framework for the Argus II Implant

被引:0
作者
Finn, Kathleen E. [1 ,2 ]
Zander, Hans J. [1 ,2 ]
Graham, Robert D. [1 ,2 ]
Lempka, Scott F. [1 ,2 ]
Weiland, James D. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Biointerfaces Inst, Ann Arbor, MI 48105 USA
[3] Univ Michigan, Dept Ophthalmol & Visual Sci, Ann Arbor, MI 48109 USA
来源
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY | 2020年 / 1卷
关键词
Retinal prosthesis; Argus II; computational modeling; retinal ganglion cell; patient-specific; ELECTRICAL-STIMULATION; GANGLION-CELLS; EXCITATION; MECHANISMS; SHAPE;
D O I
10.1109/OJEMB.2020.3001563
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: Retinal prosthesis performance is limited by the variability of elicited phosphenes. The stimulating electrode's position with respect to retinal ganglion cells (RGCs) affects both perceptual threshold and phosphene shape. We created a modeling framework incorporating patient-specific anatomy and electrode location to investigate RGC activation and predict inter-electrode differences for one Argus II user. Methods: We used ocular imaging to build a three-dimensional finite element model characterizing retinal morphology and implant placement. To predict the neural response to stimulation, we coupled electric fields with multi-compartment cable models of RGCs. We evaluated our model predictions by comparing them to patient-reported perceptual threshold measurements. Results: Our model was validated by the ability to replicate clinical impedance and threshold values, along with known neurophysiological trends. Inter-electrode threshold differences in silico correlated with in vivo results. Conclusions: We developed a patient-specific retinal stimulation framework to quantitatively predict RGC activation and better explain phosphene variations.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 37 条
  • [1] Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study
    Abramian, Miganoosh
    Lovell, Nigel H.
    Morley, John W.
    Suaning, Gregg J.
    Dokos, Socrates
    [J]. JOURNAL OF NEURAL ENGINEERING, 2015, 12 (01)
  • [2] Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects
    Ahuja, A. K.
    Yeoh, J.
    Dorn, J. D.
    Caspi, A.
    Wuyyuru, V.
    McMahon, M. J.
    Humayun, M. S.
    Greenberg, R. J.
    daCruz, L.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2013, 2 (04):
  • [3] The Argus™ II retinal prosthesis: Factors affecting patient selection for implantation
    Ahuja, Ashish Kishore
    Behrend, Matthew R.
    [J]. PROGRESS IN RETINAL AND EYE RESEARCH, 2013, 36 : 1 - 23
  • [4] Beyeler M., 2018, BIOPHYSICAL MODEL AX, V2, P2
  • [5] A model of ganglion axon pathways accounts for percepts elicited by retinal implants
    Beyeler, Michael
    Nanduri, Devyani
    Weiland, James D.
    Rokem, Ariel
    Boynton, Geoffrey M.
    Fine, Ione
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Bron A.J., 1997, WOLFFS ANATOMY EYE O
  • [7] Patient-speciftic analysis of the volume of tissue activated during deep brain stimulation
    Butson, Christopher R.
    Cooper, Scott E.
    Henderson, Jaimie M.
    McIntyre, Cameron C.
    [J]. NEUROIMAGE, 2007, 34 (02) : 661 - 670
  • [8] Carnevale NT., 2009, The NEURON book, V1st ed
  • [9] Improvements in vision-related quality of life in blind patients implanted with the Argus II Epiretinal Prosthesis
    Duncan, Jacque L.
    Richards, Thomas P.
    Arditi, Aries
    da Cruz, Lyndon
    Dagnelie, Gislin
    Dorn, Jessy D.
    Ho, Allen C.
    de Koo, Lisa C. Olmos
    Barale, Pierre-Olivier
    Stanga, Paulo E.
    Thumann, Gabriele
    Wang, Yizhong
    Greenberg, Robert J.
    [J]. CLINICAL AND EXPERIMENTAL OPTOMETRY, 2017, 100 (02) : 144 - 150
  • [10] Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration
    Esler, Timothy B.
    Kerr, Robert R.
    Tahayori, Bahman
    Grayden, David B.
    Meffin, Hamish
    Burkitt, Anthony N.
    [J]. PLOS ONE, 2018, 13 (03):