Subspace clustering using a symmetric low-rank representation

被引:43
作者
Chen, Jie [1 ]
Mao, Hua [1 ]
Sang, Yongsheng [1 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Low-rank representation; Subspace clustering; Affinity matrix learning; Spectral clustering; ALGORITHM; EQUATIONS;
D O I
10.1016/j.knosys.2017.02.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a low-rank representation with symmetric constraint (LRRSC) method for robust subspace clustering. Given a collection of data points approximately drawn from multiple subspaces, the proposed technique can simultaneously recover the dimension and members of each subspace. LRRSC extends the original low-rank representation algorithm by integrating a symmetric constraint into the low-rankness property of high-dimensional data representation. The symmetric low-rank representation, which preserves the subspace structures of high-dimensional data, guarantees weight consistency for each pair of data points so that highly correlated data points of subspaces are represented together. Moreover, it can be efficiently calculated by solving a convex optimization problem. We provide a proof for minimizing the nuclear-norm regularized least square problem with a symmetric constraint. The affinity matrix for spectral clustering can be obtained by further exploiting the angular information of the principal directions of the symmetric low-rank representation. This is a critical step towards evaluating the memberships between data points. Besides, we also develop eLRRSC algorithm to improve the scalability of the original LRRSC by considering its closed form solution. Experimental results on benchmark databases demonstrate the effectiveness and robustness of LRRSC and its variant compared with several state-of-the-art subspace clustering algorithms. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:46 / 57
页数:12
相关论文
共 53 条
[1]  
Agarwal Sameer, 2005, Beyond pairwise clustering
[2]  
[Anonymous], 2005, TPAMI
[3]  
[Anonymous], 2013, Foundations and Trends in Optimization
[4]  
[Anonymous], 2011, ARXIV11071561
[5]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[6]  
Boult T. E., 1991, Proceedings of the IEEE Workshop on Visual Motion (Cat. No.91TH0390-5), P179, DOI 10.1109/WVM.1991.212809
[7]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[8]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[9]   Matrix Completion With Noise [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :925-936
[10]  
Cantles E.J., 2008, J FOURIER ANAL APPL, V14, P877