Highly selective electrocatalysis for carbon dioxide reduction to formic acid by a Co(II) complex with an equatorial N4 ligand

被引:7
作者
Tsubonouchi, Yuta [1 ]
Takahashi, Daiki [1 ]
Berber, Mohamed R. [2 ]
Mohamed, Eman A. [1 ]
Zahran, Zaki N. [1 ]
Alenad, Asma M. [2 ]
Althubiti, Numa A. [2 ]
Yagi, Masayuki [1 ]
机构
[1] Niigata Univ, Fac Engn, Dept Mat Sci & Technol, 8050 Ikarashi 2, Niigata 9502181, Japan
[2] Jouf Univ, Coll Sci, Sakaka 2014, Saudi Arabia
关键词
Electrocatalytic CO2 reduction; Formic acid production; Molecular catalyst; Cobalt complex; ELECTROCHEMICAL CO2 REDUCTION; CONVERSION; CHALLENGES; CATALYSIS; FUELS;
D O I
10.1016/j.electacta.2021.138545
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Co complex, [Co-II(bibpy)L] (1-L, L is an axial ligand) with an equatorial N-4 ligand of bibpy(2-) (H(2)bibpy = 6,6'-bis-(1H-benzimidazol-2-yl)-2,2'-bipyridine) has been newly synthesized to study electrocatalytic CO2 reduction in a homogeneous DMF solution. Cyclic voltammogram (CV) of 1-L in DMF under Ar exhibited two reversible redox responses at -1.42 V (1st step) and -2.32 V (2nd step) vs. the ferrocene/ferrocenium (Fc/Fc(+)) redox potential, which could be assigned to 1-L/1(-) (with release of L) and 1 /1(2-) pairs, respectively. The CV measurement with adding 4.0% water suggests that water replaces the axial L ligand on 1-L, but no longer interacts with 1(-) and 1(2-) because of requiring no axial ligand. In CV of 1-L in the CO2-saturated DMF solution, a relatively weak reduction wave appeared at -1.70 V of the peak reduction potential (E-1'(p)) in the 1'st step, which is attributed to the reduction of 1-L with the concerted oxidative coordination of CO2 onto the axial site to form [1-CO2](-). CV of 1-L exhibited the significant catalytic current below the onset potential (E-on) of -1.9 V for CO2 reduction. The electrocatalytic CO2 reduction proceeded stably in the presence of 2.0% water as a proton source. The Em value increased linearly from -1.98 to -1.89 V with the water content increase from 0 to 4.0%. The hypothetical [1-CO2]-/[1-CO2](2-) reduction (2'nd step) involved in the catalytic CO2 reduction might be proton-coupled redox process of [1-CO2]-/[1-CO2H](-). The bulk electrolysis by 1-L in the 2.0% water-containing DMF solution at -2.32 V afforded H-2 with 3.0% Faraday efficiency (FE) and HCO2H with 68% FE. The selectivity (R-HCO2H) for HCO2H production was 96%, defined as the molar fraction of HCO2H in all the products. The overpotential (eta) for CO2 reduction to HCO2H was 0.62 V (at -2.07 V vs Fc/Fc(+)). These performances of 1-L are among those of the hitherto-reported state-of-the-art Co-complexes for electrocatalytic CO2 reduction to HCO2H in homogenous solutions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[2]   Molecular catalysis of CO2reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes [J].
Boutin, E. ;
Merakeb, L. ;
Ma, B. ;
Boudy, B. ;
Wang, M. ;
Bonin, J. ;
Anxolabehere-Mallart, E. ;
Robert, M. .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (16) :5772-5809
[3]   ELECTROCATALYTIC PROPERTIES OF NI(CYCLAM)2+ AND NI2(BISCYCLAM)4+ WITH RESPECT TO CO2 AND H2O REDUCTION [J].
COLLIN, JP ;
JOUAITI, A ;
SAUVAGE, JP .
INORGANIC CHEMISTRY, 1988, 27 (11) :1986-1990
[4]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[5]   A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst [J].
Costentin, Cyrille ;
Drouet, Samuel ;
Robert, Marc ;
Saveant, Jean-Michel .
SCIENCE, 2012, 338 (6103) :90-94
[6]   Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis [J].
Costentin, Cyrille ;
Drouet, Samuel ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (27) :11235-11242
[7]   Metal-Ligand Cooperativity via Exchange Coupling Promotes Iron-Catalyzed Electrochemical CO2 Reduction at Low Overpotentials [J].
Derrick, Jeffrey S. ;
Loipersberger, Matthias ;
Chatterjee, Ruchira ;
Iovan, Diana A. ;
Smith, Peter T. ;
Chakarawet, Khetpakorn ;
Yano, Junko ;
Long, Jeffrey R. ;
Head-Gordon, Martin ;
Chang, Christopher J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (48) :20489-20501
[8]   Electroreduction of CO2 to Formate with Low Overpotential using Cobalt Pyridine Thiolate Complexes [J].
Dey, Subal ;
Todorova, Tanya K. ;
Fontecave, Marc ;
Mougel, Victor .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (36) :15726-15733
[9]   Structural, photophysical and electrochemical studies of [RuN6]2+ complexes having polypyridine and azole mixed-donor sites [J].
Dutta, Supriya ;
Baitalik, Sujoy ;
Ghosh, Meenakshi ;
Floerke, Ulrich ;
Nag, Kamalaksha .
INORGANICA CHIMICA ACTA, 2011, 372 (01) :227-236
[10]   Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2 [J].
Elgrishi, Noemie ;
Chambers, Matthew B. ;
Wang, Xia ;
Fontecave, Marc .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (03) :761-796