A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects

被引:31
作者
Ang, Micah Belle Marie Yap [1 ]
Marquez, Jazmine Aiya D. [2 ]
Huang, Shu-Hsien [1 ,3 ]
Lee, Kueir-Rarn [1 ,4 ]
机构
[1] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Dept Chem Engn, Taoyuan 32023, Taiwan
[2] De La Salle Univ, Chem Engn Dept, 2401 Taft Ave, Manila 0922, Philippines
[3] Natl Ilan Univ, Dept Chem & Mat Engn, Yilan 26047, Taiwan
[4] Chung Yuan Christian Univ, Res Ctr Circular Econ, Taoyuan 32023, Taiwan
关键词
Pervaporation; Interfacial polymerization; Polyamide; THIN-FILM-COMPOSITE; HOLLOW-FIBER MEMBRANES; REVERSE-OSMOSIS MEMBRANES; POLYAMIDE NANOFILTRATION MEMBRANE; NANOCOMPOSITE MEMBRANES; HIGH-PERFORMANCE; ISOPROPANOL DEHYDRATION; SEPARATION PERFORMANCE; SURFACE MODIFICATION; ETHANOL DEHYDRATION;
D O I
10.1016/j.jiec.2021.03.013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacial polymerization (IP) is considered as an emerging technique for fabricating pervaporation (PV) membranes. Typically, PV membranes fabricated through IP achieve high separation efficiency and overall performance as they possess characteristics that play vital roles in defying the limiting trade-off between permeation flux and separation factor. There is a great deal of flexibility in the IP technique. Therefore, this article reviews evolving trends in developing PV membranes fabricated through IP in terms of methods of fabrication and modification strategies, active layer and membrane support selections, and potential industrial applications. Moreover, we also emphasized the free volume analysis of the membranes prepared through IP. Future plans for furthering IP as a fabrication technique for PV membranes are also explored. (c) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Factors affecting the performance of pervaporation membranes fabricated through interfacial polymerization . . . . . . . . . . . . . . . . . . . . . . . 131 Methods of interfacial polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Membranesupport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Selectivelayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Chemical structure of the monomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Monomer concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Immersiontime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Reactiontime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Polyamide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Otherpolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
引用
收藏
页码:129 / 141
页数:13
相关论文
共 140 条
[1]   Application of interfacially polymerized polyamide composite membranes to isopropanol dehydration: Effect of membrane pre-treatment and temperature [J].
Albo, Jonathan ;
Wang, Jinhui ;
Tsuru, Toshinori .
JOURNAL OF MEMBRANE SCIENCE, 2014, 453 :384-393
[2]   Thin film composite membranes with desirable support layer for MeOH/MTBE pervaporation [J].
Alibakhshian, Farzaneh ;
Chenar, Mahdi Pourafshari ;
Asghari, Morteza .
JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (22)
[3]   Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate [J].
An, Quan-Fu ;
Ang, Micah Belle Marie Yap ;
Huang, Yun-Hsuan ;
Huang, Shu-Hsien ;
Chia, Yu-Hsuan ;
Lai, Cheng-Lee ;
Tsai, Hui-An ;
Hun, Wei-Song ;
Hu, Chien-Chieh ;
Wu, Yo-Ping ;
Lee, Kueir-Rarn .
JOURNAL OF MEMBRANE SCIENCE, 2019, 583 :31-39
[4]   High-performance thin-film composite polyetheramide membranes for the dehydration of tetrahydrofuran [J].
Ang, Micah Belle Marie Yap ;
Huang, Shu-Hsien ;
Li, Yan-Chang ;
Cahatol, Andrea Therese C. ;
Tayo, Lemmuel L. ;
Hung, Wei-Song ;
Tsai, Hui-An ;
Hu, Chien-Chieh ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih .
JOURNAL OF MEMBRANE SCIENCE, 2020, 611
[5]   Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes [J].
Ang, Micah Belle Marie Yap ;
Huang, Shu-Hsien ;
Chang, Ming-Wei ;
Lai, Cheng-Lee ;
Tsai, Hui-An ;
Hung, Wei-Song ;
Hu, Chien-Chieh ;
Lee, Kueir-Rarn .
SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 235
[6]   Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles [J].
Ang, Micah Belle Marie Yap ;
Trilles, Calvin A. ;
De Guzman, Manuel Reyes ;
Pereira, John Marseline ;
Aquino, Ruth R. ;
Huang, Shu-Hsien ;
Hu, Chien-Chieh ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 :113-120
[7]   A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ [J].
Ang, Micah Belle Marie Yap ;
Ji, Yan-Li ;
Huang, Shu-Hsien ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih .
JOURNAL OF MEMBRANE SCIENCE, 2019, 579 :79-89
[8]   Correlating PSf Support Physicochemical Properties with the Formation of Piperazine-Based Polyamide and Evaluating the Resultant Nanofiltration Membrane Performance [J].
Ang, Micah Belle Marie Yap ;
Lau, Victor Jr. ;
Ji, Yan-Li ;
Huang, Shu-Hsien ;
An, Quan-Fu ;
Caparanga, Alvin R. ;
Tsai, Hui-An ;
Hung, Wei-Song ;
Hu, Chien-Chieh ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih .
POLYMERS, 2017, 9 (10)
[9]  
[Anonymous], 2006, GOOGLE PATENTS
[10]   APPLICATION OF PERVAPORATION PROCESS TO SEPARATE AZEOTROPIC MIXTURES [J].
APTEL, P ;
CHALLARD, N ;
CUNY, J ;
NEEL, J .
JOURNAL OF MEMBRANE SCIENCE, 1976, 1 (03) :271-287