Machine Learning-Based Optical Performance Monitoring for Super-Channel Optical Networks

被引:5
作者
Saif, Waddah S. [1 ,2 ]
Ragheb, Amr M. [1 ,2 ]
Nebendahl, Bernd [3 ]
Alshawi, Tariq [1 ,2 ]
Marey, Mohamed [4 ]
Alshebeili, Saleh A. [1 ,2 ]
机构
[1] King Saud Univ, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, KACST TIC Radio Frequency & Photon E Soc, Riyadh 11421, Saudi Arabia
[3] Keysight Technol, D-71034 Boblingen, Germany
[4] Prince Sultan Univ, Coll Engn, Smart Syst Engn Lab, Riyadh 11586, Saudi Arabia
关键词
super-channel based optical networks; optical performance monitoring; machine learning; MODULATION FORMAT IDENTIFICATION; DEEP NEURAL-NETWORK;
D O I
10.3390/photonics9050299
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, and for the first time in literature, optical performance monitoring (OPM) of super-channel optical networks is considered. In particular, we propose a novel machine learning OPM technique based on the use of transformed in-phase quadrature histogram (IQH) features and support vector regressor (SVR) to estimate different optical parameters such as optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). Two transformation methods, the two-dimensional (2D) discrete Fourier transform (DFT) and 2D discrete cosine transform (DCT), are applied to the IQH to extract features with a considerably reduced dimensionality. For the purpose of simulation, the OPM of a 7 x 20 Gbaud dual-polarization-quadrature phase shift keying (DP-QPSK) is considered. Simulations reveal that it can accurately estimate the various optical parameters (i.e., OSNR and CD) with a coefficient of determination value greater than 0.98. In addition, the effectiveness of proposed OPM scheme is examined under different values of polarization mode dispersion and frequency offset, as well as the utilization of different higher order modulation formats. Moreover, proof-of-concept experiments are performed for validation. The results show an excellent matching between the simulation and experimental findings.
引用
收藏
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 2009, PEARSON ED INDIA
[2]  
Chatterjee B., 2020, ELASTIC OPTICAL NETW, DOI DOI 10.1201/9780429465284
[3]   Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals [J].
Cheng, Yijun ;
Fu, Songnian ;
Tang, Ming ;
Liu, Deming .
OPTICS EXPRESS, 2019, 27 (13) :19062-19074
[4]  
Cisco, 2018, White paper
[5]   Optical Performance Monitoring: A Review of Current and Future Technologies [J].
Dong, Zhenhua ;
Khan, Faisal Nadeem ;
Sui, Qi ;
Zhong, Kangping ;
Lu, Chao ;
Lau, Alan Pak Tao .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (02) :525-543
[6]   Efficient Classification of Optical Modulation Formats Based on Singular Value Decomposition and Radon Transformation [J].
Eltaieb, Rania A. ;
Farghal, Ahmed E. A. ;
Ahmed, HossamEl-din H. ;
Saif, Waddah S. ;
Ragheb, Amr ;
Alshebeili, Saleh A. ;
Shalaby, Hossam M. H. ;
Abd El-Samie, Fathi E. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (03) :619-631
[7]   Free space optic channel monitoring using machine learning [J].
Esmail, Maged A. ;
Saif, Waddah S. ;
Ragheb, Amr M. ;
Alshebeili, Saleh A. .
OPTICS EXPRESS, 2021, 29 (07) :10967-10981
[8]   Distributed Variational Representation Learning [J].
Estella-Aguerri, Inaki ;
Zaidi, Abdellatif .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) :120-138
[9]   A Comprehensive Survey of Recent Advancements in Molecular Communication [J].
Farsad, Nariman ;
Yilmaz, H. Birkan ;
Eckford, Andrew ;
Chae, Chan-Byoung ;
Guo, Weisi .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (03) :1887-1919
[10]   In-band OSNR monitoring using a pair of Michelson fiber interferometers [J].
Flood, E. ;
Guo, W. H. ;
Reid, D. ;
Lynch, M. ;
Bradley, A. L. ;
Barry, L. P. ;
Donegan, J. F. .
OPTICS EXPRESS, 2010, 18 (04) :3618-3625