Salem sets in local fields, the Fourier restriction phenomenon and the Hausdorff-Young inequality

被引:4
作者
Papadimitropoulos, Christos [1 ]
机构
[1] Univ Edinburgh, Maxwell Inst Math Sci, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Local field; Fourier transform; Vector measure; OPTIMAL DOMAINS; INTEGRAL-REPRESENTATIONS; CONVOLUTION-OPERATORS; KERNEL OPERATORS;
D O I
10.1016/j.jfa.2010.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of Salem sets in the ring of integers of any local field and study the Fourier restriction phenomenon on such sets. Optimal extension of the Hausdorff-Young inequality, initially attained for the torus by G. Mockenhaupt and W. Ricker, is also established in the local field setting. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 23 条
[1]  
[Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
[2]   Optimal domains for the kernel operator associated with Sobolev's inequality (vol 158, pg 131, 2003) [J].
Curbera, GP ;
Ricker, WJ .
STUDIA MATHEMATICA, 2005, 170 (02) :217-218
[3]  
Curbera GP, 2002, MATH NACHR, V244, P47, DOI 10.1002/1522-2616(200210)244:1<47::AID-MANA47>3.0.CO
[4]  
2-B
[5]  
Curbera GP, 2007, T AM MATH SOC, V359, P1471
[6]   Banach lattices with the Fatou property and optimal domains of kernel operators [J].
Curbera, Guillermo P. ;
Ricker, Werner J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (02) :187-204
[7]   Optimal domain for the Hardy operator [J].
Delgado, Olvido ;
Soria, Javier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :119-133
[8]   CERTAIN SALEM SETS [J].
KAHANE, JP .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (1-2) :87-&
[9]  
Kahane JP., 1985, SOME RANDOM SERIES F
[10]   ON THE THEOREM OF JARNIK AND BESICOVITCH [J].
KAUFMAN, R .
ACTA ARITHMETICA, 1981, 39 (03) :265-267