Simulated Contextual Bandits for Personalization Tasks from Recommendation Datasets

被引:0
作者
Dereventsov, Anton [1 ]
Bibin, Anton [2 ]
机构
[1] Lirio LLC, Lirio AI Res, Knoxville, TN 37923 USA
[2] Skoltech, Skoltech Agro, Moscow, Russia
来源
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW | 2022年
关键词
personalization; recommendation; reinforcement learning; contextual bandit; simulated environment; FRAMEWORK;
D O I
10.1109/ICDMW58026.2022.00127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method for generating simulated contextual bandit environments for personalization tasks from recommendation datasets like MovieLens, Netflix, Last.fm, Million Song, etc. This allows for personalization environments to be developed based on real-life data to reflect the nuanced nature of real-world user interactions. The obtained environments can be used to develop methods for solving personalization tasks, algorithm benchmarking, model simulation, and more. We demonstrate our approach with numerical examples on MovieLens and IMDb datasets.
引用
收藏
页码:979 / 984
页数:6
相关论文
共 42 条
  • [1] Chen M, 2019, ADV NEUR IN, V32
  • [2] Das A.S., 2007, P 16 INT C WORLD WID, DOI DOI 10.1145/1242572.1242610
  • [3] On the Unreasonable Efficiency of State Space Clustering in Personalization Tasks
    Dereventsov, Anton
    Vatsavai, Raju
    Webster, Clayton G.
    [J]. 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 742 - 749
  • [4] Evaluating the Effectiveness of Personalized Web Search
    Dou, Zhicheng
    Song, Ruihua
    Wen, Ji-Rong
    Yuan, Xiaojie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (08) : 1178 - 1190
  • [5] Dudik M., 2011, P 28 INT C MACHINE L, P1097
  • [6] el Hassouni Ali, 2018, PRIMA 2018: Principles and Practice of Multi-Agent Systems. 21st International Conference. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11224), P467, DOI 10.1007/978-3-030-03098-8_31
  • [7] Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens
    Forouzandeh, Saman
    Berahmand, Kamal
    Rostami, Mehrdad
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 7805 - 7832
  • [8] Personalization in Practice: Methods and Applications
    Goldenberg, Dmitri
    Kofman, Kostia
    Albert, Javier
    Mizrachi, Sarai
    Horowitz, Adam
    Teinemaa, Irene
    [J]. WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1123 - 1126
  • [9] Penedo JMG, 2022, PSYCHOTHER RES, V32, P151, DOI [10.1080/10503307.2021.1930242, 10.1109/IAS/PCA50164.2021.10143786]
  • [10] Recommendation strategies in personalization applications
    Gorgoglione, Michele
    Panniello, Umberto
    Tuzhilin, Alexander
    [J]. INFORMATION & MANAGEMENT, 2019, 56 (06)