PRECONDITIONERS FOR SYMMETRIZED TOEPLITZ AND MULTILEVEL TOEPLITZ MATRICES

被引:16
作者
Pestana, J. [1 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Toeplitz matrix; multilevel Toeplitz matrix; symmetrization; preconditioning; Krylov subspace method; FINITE-DIFFERENCE APPROXIMATIONS; CIRCULANT PRECONDITIONERS; SPECTRAL-ANALYSIS; CONVERGENCE; STRATEGIES; ALGORITHM; SYSTEMS;
D O I
10.1137/18M1205406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When solving linear systems with nonsymmetric Toeplitz or multilevel Toeplitz matrices using Krylov subspace methods, the coefficient matrix may be symmetrized. The preconditioned MINRES method can then be applied to this symmetrized system, which allows rigorous upper bounds on the number of MINRES iterations to be obtained. However, effective preconditioners for symmetrized (multilevel) Toeplitz matrices are lacking. Here, we propose novel ideal preconditioners and investigate the spectra of the preconditioned matrices. We show how these preconditioners can be approximated and demonstrate their effectiveness via numerical experiments.
引用
收藏
页码:870 / 887
页数:18
相关论文
共 48 条
[21]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[22]   ON CENTROHERMITIAN MATRICES [J].
HILL, RD ;
BATES, RG ;
WATERS, SR .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (01) :128-133
[23]   Preconditioning strategies for non-Hermitian Toeplitz linear systems [J].
Huckle, T ;
Serra-Capizzano, S ;
Tablino-Possio, C .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) :211-220
[24]   Computing the square roots of matrices with central symmetry [J].
Liu, Zhongyun ;
Zhang, Yulin ;
Rui Ralha .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :715-726
[25]   Spectral properties of flipped Toeplitz matrices and related preconditioning [J].
Mazza, M. ;
Pestana, J. .
BIT NUMERICAL MATHEMATICS, 2019, 59 (02) :463-482
[26]   Finite difference approximations for two-sided space-fractional partial differential equations [J].
Meerschaert, MM ;
Tadjeran, C .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (01) :80-90
[27]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[28]   Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations [J].
Moghaderi, Hamid ;
Dehghan, Mehdi ;
Donatelli, Marco ;
Mazza, Mariarosa .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 :992-1011
[29]  
Ng M.K., 2004, NUMER MATH SCI COMP
[30]   Circulant preconditioners for indefinite Toeplitz systems [J].
Ng, MK ;
Potts, D .
BIT NUMERICAL MATHEMATICS, 2001, 41 (05) :1079-1088