ULOOF: A User Level Online Offloading Framework for Mobile Edge Computing

被引:100
|
作者
Neto, Jose Leal D. [1 ]
Yu, Se-Young [2 ]
Macedo, Daniel F. [3 ]
Nogueira, Jose Marcos S. [3 ]
Langar, Rami [4 ]
Secci, Stefano [5 ]
机构
[1] Google Inc, BR-30260070 Belo Horizonte, MG, Brazil
[2] Northwestern Univ, Evanston, IL 60208 USA
[3] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Paris Est Marne la Vallee UPEM, LIGM CNRS UMR 8049, F-77420 Champs Sur Marne, France
[5] Sorbonne Univ, CNRS, LIP6, Paris, France
关键词
Computation offloading; edge computing; android; WIRELESS CELLULAR NETWORKS; RESOURCE-ALLOCATION; PERFORMANCE; MANAGEMENT;
D O I
10.1109/TMC.2018.2815015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile devices are equipped with limited processing power and battery charge. A mobile computation offloading framework is a software that provides better user experience in terms of computation time and energy consumption, also taking profit from edge computing facilities. This article presents User-Level Online Offloading Framework (ULOOF), a lightweight and efficient framework for mobile computation offloading. ULOOF is equipped with a decision engine that minimizes remote execution overhead, while not requiring any modification in the device's operating system. By means of real experiments with Android systems and simulations using large-scale data from a major cellular network provider, we show that ULOOF can offload up to 73 percent of computations, and improve the execution time by 50 percent while at the same time significantly reducing the energy consumption of mobile devices.
引用
收藏
页码:2660 / 2674
页数:15
相关论文
共 50 条
  • [41] Joint multi-user DNN partitioning and task offloading in mobile edge computing
    Liao, Zhuofan
    Hu, Weibo
    Huang, Jiawei
    Wang, Jianxin
    AD HOC NETWORKS, 2023, 144
  • [42] Mobility-Aware Multi-User Offloading Optimization for Mobile Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Min, Geyong
    Wang, Chao
    Zhu, Qingxin
    Duan, Hancong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (03) : 3341 - 3356
  • [43] Nonlinear Pricing Based Distributed Offloading in Multi-User Mobile Edge Computing
    Liang, Bizheng
    Fan, Rongfei
    Hu, Han
    Zhang, Yu
    Zhang, Ning
    Anpalagan, Alagan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 1077 - 1082
  • [44] Research and experiment on multi-user computational offloading based on mobile edge computing
    Lu J.
    Fang B.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2020, 47 (04): : 78 - 85
  • [45] Joint Computation Offloading and User Association in Multi-Task Mobile Edge Computing
    Dai, Yueyue
    Xu, Du
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (12) : 12313 - 12325
  • [46] Joint Beamforming and Computation Offloading for Multi-user Mobile-Edge Computing
    Ding, Changfeng
    Wang, Jun-Bo
    Cheng, Ming
    Chang, Chuanwen
    Wang, Jin-Yuan
    Lin, Min
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [47] Optimal multi-user offloading with resources allocation in mobile edge cloud computing
    Liu, Jiadi
    Guo, Songtao
    Wang, Quyuan
    Pan, Chengsheng
    Yang, Li
    COMPUTER NETWORKS, 2023, 221
  • [48] Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile Edge Computing
    Nath, Samrat
    Wu, Jingxian
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [49] Dynamic multi-user computation offloading for wireless powered mobile edge computing
    Li, Chunlin
    Tang, Jianhang
    Luo, Youlong
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2019, 131 : 1 - 15
  • [50] Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing
    Chen, Xu
    Jiao, Lei
    Li, Wenzhong
    Fu, Xiaoming
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) : 2827 - 2840