Carbon-dioxide absorption spectroscopy with solar photon counting and integrated lithium niobate micro-ring resonator

被引:4
作者
Zhang, Jiuyi [1 ,2 ]
Sua, Yong Meng [1 ,2 ]
Chen, Jia-Yang [1 ,2 ]
Ramanathan, Jeevanandha [1 ,2 ]
Tang, Chao [1 ,2 ]
Li, Zhan [1 ,2 ]
Hu, Yongxiang [3 ]
Huang, Yu-Ping [1 ,2 ]
机构
[1] Stevens Inst Technol, Dept Phys, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
[2] Stevens Inst Technol, Ctr Quantum Sci & Engn, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
[3] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
LIDAR SYSTEM; SILICON; CO2; SCIENCE;
D O I
10.1063/5.0045869
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a spectroscope using single-photon counters and a chip-integrated lithium niobate micro-ring filter to measure the atmospheric CO2 absorption spectrum passively. By thermo-optically sweeping the filter over 150pm and referencing the resulting photon counts to a bypass channel, we sample the absorption spectrum at an ultrahigh-resolution of 6pm. Incorporating it into a ground-based field system, we characterize the CO2 absorption through the atmosphere by counting the solar photons across the absorption line around 1572.02nm, which agrees well with its transmission spectrum at standard atmospheric pressure. Our results highlight the potential of adopting integrated photonics and single-photon counting in remote sensing systems for high detection sensitivity, superior resolution, and significantly reduced size, weight, and power.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector [J].
Abshire, James B. ;
Ramanathan, Anand K. ;
Riris, Haris ;
Allan, Graham R. ;
Sun, Xiaoli ;
Hasselbrack, William E. ;
Mao, Jianping ;
Wu, Stewart ;
Chen, Jeffrey ;
Numata, Kenji ;
Kawa, Stephan R. ;
Yang, Mei Ying Melissa ;
DiGangi, Joshua .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (04) :2001-2025
[2]   Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing [J].
Ai, X. ;
Perez-Serrano, A. ;
Quatrevalet, M. ;
Nock, R. W. ;
Dahnoun, N. ;
Ehret, G. ;
Esquivias, I. ;
Rarity, J. G. .
OPTICS EXPRESS, 2016, 24 (18) :21119-21133
[3]   Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors [J].
Al Sayem, Ayed ;
Cheng, Risheng ;
Wang, Sihao ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2020, 116 (15)
[4]   CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions [J].
Amediek, Axel ;
Ehret, Gerhard ;
Fix, Andreas ;
Wirth, Martin ;
Buedenbender, Christian ;
Quatrevalet, Mathieu ;
Kiemle, Christoph ;
Gerbig, Christoph .
APPLIED OPTICS, 2017, 56 (18) :5182-5197
[5]   Nonlinear target count rate estimation in single-photon lidar due to first photon bias [J].
Barton-Grimley, Rory A. ;
Thayer, Jeffrey P. ;
Hayman, Matthew .
OPTICS LETTERS, 2019, 44 (05) :1249-1252
[6]   Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement [J].
Boeck, Robi ;
Jaeger, Nicolas A. F. ;
Rouger, Nicolas ;
Chrostowski, Lukas .
OPTICS EXPRESS, 2010, 18 (24) :25151-25157
[7]  
Briano FO, 2020, CONF LASER ELECTR
[8]   Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2 [J].
Caron, Jerome ;
Durand, Yannig .
APPLIED OPTICS, 2009, 48 (28) :5413-5422
[9]  
Colangelo M., 2020, 2020 Conference on Lasers and Electro-Optics (CLEO), P1
[10]   The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes [J].
Eldering, A. ;
Wennberg, P. O. ;
Crisp, D. ;
Schimel, D. S. ;
Gunson, M. R. ;
Chatterjee, A. ;
Liu, J. ;
Schwandner, F. M. ;
Sun, Y. ;
O'Dell, C. W. ;
Frankenberg, C. ;
Taylor, T. ;
Fisher, B. ;
Osterman, G. B. ;
Wunch, D. ;
Hakkarainen, J. ;
Tamminen, J. ;
Weir, B. .
SCIENCE, 2017, 358 (6360)