Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene

被引:81
作者
Gheldof, Nele [1 ,2 ]
Smith, Emily M. [1 ,2 ]
Tabuchi, Tomoko M. [1 ,2 ]
Koch, Christoph M. [3 ]
Dunham, Ian [3 ]
Stamatoyannopoulos, John A. [4 ]
Dekker, Job [1 ,2 ]
机构
[1] Univ Massachusetts, Program Gene Funct & Express, Sch Med, Worcester, MA 01605 USA
[2] Univ Massachusetts, Dept Biochem & Mol Pharmacol, Sch Med, Worcester, MA 01605 USA
[3] Wellcome Trust Sanger Inst, European Bioinformat Inst, Cambridge CB10 1SD, England
[4] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
CHROMOSOME CONFORMATION CAPTURE; I-HYPERSENSITIVE SITES; CHROMATIN CONFORMATION; HISTONE MODIFICATIONS; SPATIAL-ORGANIZATION; EXPRESSION; ENHANCERS; CTCF; TRANSCRIPTION; PROMOTER;
D O I
10.1093/nar/gkq175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of regulatory elements and their target genes is complicated by the fact that regulatory elements can act over large genomic distances. Identification of long-range acting elements is particularly important in the case of disease genes as mutations in these elements can result in human disease. It is becoming increasingly clear that long-range control of gene expression is facilitated by chromatin looping interactions. These interactions can be detected by chromosome conformation capture (3C). Here, we employed 3C as a discovery tool for identification of long-range regulatory elements that control the cystic fibrosis transmembrane conductance regulator gene, CFTR. We identified four elements in a 460-kb region around the locus that loop specifically to the CFTR promoter exclusively in CFTR expressing cells. The elements are located 20 and 80 kb upstream; and 109 and 203 kb downstream of the CFTR promoter. These elements contain DNase I hypersensitive sites and histone modification patterns characteristic of enhancers. The elements also interact with each other and the latter two activate the CFTR promoter synergistically in reporter assays. Our results reveal novel long-range acting elements that control expression of CFTR and suggest that 3C-based approaches can be used for discovery of novel regulatory elements.
引用
收藏
页码:4325 / 4336
页数:12
相关论文
共 53 条
  • [1] Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    Birney, Ewan
    Stamatoyannopoulos, John A.
    Dutta, Anindya
    Guigo, Roderic
    Gingeras, Thomas R.
    Margulies, Elliott H.
    Weng, Zhiping
    Snyder, Michael
    Dermitzakis, Emmanouil T.
    Stamatoyannopoulos, John A.
    Thurman, Robert E.
    Kuehn, Michael S.
    Taylor, Christopher M.
    Neph, Shane
    Koch, Christoph M.
    Asthana, Saurabh
    Malhotra, Ankit
    Adzhubei, Ivan
    Greenbaum, Jason A.
    Andrews, Robert M.
    Flicek, Paul
    Boyle, Patrick J.
    Cao, Hua
    Carter, Nigel P.
    Clelland, Gayle K.
    Davis, Sean
    Day, Nathan
    Dhami, Pawandeep
    Dillon, Shane C.
    Dorschner, Michael O.
    Fiegler, Heike
    Giresi, Paul G.
    Goldy, Jeff
    Hawrylycz, Michael
    Haydock, Andrew
    Humbert, Richard
    James, Keith D.
    Johnson, Brett E.
    Johnson, Ericka M.
    Frum, Tristan T.
    Rosenzweig, Elizabeth R.
    Karnani, Neerja
    Lee, Kirsten
    Lefebvre, Gregory C.
    Navas, Patrick A.
    Neri, Fidencio
    Parker, Stephen C. J.
    Sabo, Peter J.
    Sandstrom, Richard
    Shafer, Anthony
    [J]. NATURE, 2007, 447 (7146) : 799 - 816
  • [2] CTCF mediates insulator function at the CFTR locus
    Blackledge, Neil P.
    Carter, Emma J.
    Evans, Joanne R.
    Lawson, Victoria
    Rowntree, Rebecca K.
    Harris, Ann
    [J]. BIOCHEMICAL JOURNAL, 2007, 408 (267-275) : 267 - 275
  • [3] An insulator element 3 to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells
    Blackledge, Neil P.
    Ott, Christopher J.
    Gillen, Austin E.
    Harris, Ann
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (04) : 1086 - 1094
  • [4] Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening
    D'haene, Barbara
    Attanasio, Catia
    Beysen, Diane
    Dostie, Josee
    Lemire, Edmond
    Bouchard, Philippe
    Field, Michael
    Jones, Kristie
    Lorenz, Birgit
    Menten, Bjorn
    Buysse, Karen
    Pattyn, Filip
    Friedli, Marc
    Ucla, Catherine
    Rossier, Colette
    Wyss, Carine
    Speleman, Frank
    De Paepe, Anne
    Dekker, Job
    Antonarakis, Stylianos E.
    De Baere, Elfride
    [J]. PLOS GENETICS, 2009, 5 (06):
  • [5] Spatial organization of gene expression: the active chromatin hub
    de Laat, W
    Grosveld, F
    [J]. CHROMOSOME RESEARCH, 2003, 11 (05) : 447 - 459
  • [6] The three 'C's of chromosome conformation capture: controls, controls, controls
    Dekker, J
    [J]. NATURE METHODS, 2006, 3 (01) : 17 - 21
  • [7] Capturing chromosome conformation
    Dekker, J
    Rippe, K
    Dekker, M
    Kleckner, N
    [J]. SCIENCE, 2002, 295 (5558) : 1306 - 1311
  • [8] Gene regulation in the third dimension
    Dekker, Job
    [J]. SCIENCE, 2008, 319 (5871) : 1793 - 1794
  • [9] GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p
    Dekker, Job
    [J]. GENOME BIOLOGY, 2007, 8 (06)