ATM at the crossroads of reactive oxygen species and autophagy

被引:29
作者
Xie, Xiaochen [1 ,2 ]
Zhang, Ye [1 ]
Wang, Zhuo [1 ]
Wang, Shanshan [1 ]
Jiang, Xiaoyou [1 ]
Cui, Hongyan [1 ]
Zhou, Tingting [1 ]
He, Zheng [3 ]
Feng, Hao [4 ]
Guo, Qiqiang [1 ]
Song, Xiaoyu [1 ]
Cao, Liu [1 ]
机构
[1] China Med Univ, Coll Basic Med Sci, Key Lab Med Cell Biol, Minist Educ,Key Lab Liaoning Prov, Shenyang 110122, Liaoning, Peoples R China
[2] China Med Univ, Affiliated Hosp 1, Inst Endocrinol, Dept Endocrinol & Metab,Liaoning Prov Key Lab End, Shenyang 110001, Liaoning, Peoples R China
[3] China Med Univ, Dept Radiat Oncol, Affiliated Hosp 1, Shenyang 110001, Liaoning, Peoples R China
[4] China Med Univ, Dept Ophthalmol, Affiliated Hosp 1, Shenyang 110001, Liaoning, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES | 2021年 / 17卷 / 12期
关键词
ATM; ROS; oxidative stress; autophagy; DNA damage response; ATAXIA-TELANGIECTASIA GENE; DNA-DAMAGE RESPONSE; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; CELLULAR SENESCENCE; ACTIVATES ATM; FREE-RADICALS; PROTEIN; ROS; GENERATION;
D O I
10.7150/ijbs.63963
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.
引用
收藏
页码:3080 / 3090
页数:11
相关论文
共 106 条
  • [21] Cirotti C, 2021, EMBO REP, V22
  • [22] ATM plays antioxidant, boosting mitophagy via denitrosylation
    Cirotti, Claudia
    Filomeni, Giuseppe
    [J]. AUTOPHAGY, 2021, 17 (02) : 590 - 592
  • [23] FREE RADICALS IN BIOLOGICAL MATERIALS
    COMMONER, B
    TOWNSEND, J
    PAKE, GE
    [J]. NATURE, 1954, 174 (4432) : 689 - 691
  • [24] ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
    Cosentino, Claudia
    Grieco, Domenico
    Costanzo, Vincenzo
    [J]. EMBO JOURNAL, 2011, 30 (03) : 546 - 555
  • [25] ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases
    Davalli, Pierpaola
    Mitic, Tijana
    Caporali, Andrea
    Lauriola, Angela
    D'Arca, Domenico
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
  • [26] Living on a break: cellular senescence as a DNA-damage response
    di Fagagna, Fabrizio d'Adda
    [J]. NATURE REVIEWS CANCER, 2008, 8 (07) : 512 - 522
  • [27] Doria A, 2013, NEW ENGL J MED, V368, P1845, DOI [10.1056/NEJMra1205406, 10.1056/NEJMc1303158]
  • [28] Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex
    Dupré, A
    Boyer-Chatenet, L
    Gautier, J
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (05) : 451 - 457
  • [29] Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells
    Dutta, Sujoy
    Warshall, Case
    Bandyopadhyay, Chirosree
    Dutta, Dipanjan
    Chandran, Bala
    [J]. PLOS ONE, 2014, 9 (05):
  • [30] European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) (vol 13, pg 94, 2017)
    Egea, J.
    Fabregat, I.
    Frapart, Y. M.
    Ghezzi, P.
    Goerlach, A.
    Kietzmann, T.
    Kubaichuk, K.
    Knaus, U. G.
    Lopez, M. G.
    Olaso-Gonzalez, G.
    Petry, A.
    Schulz, R.
    Vina, J.
    Winyard, P.
    Abbas, K.
    Ademowo, O. S.
    Afonso, C. B.
    Andreadou, I.
    Antelmann, H.
    Antunes, F.
    Aslan, M.
    Bachschmid, M. M.
    Barbosa, R. M.
    Belousov, V.
    Berndt, C.
    Bernlohr, D.
    Bertran, E.
    Bindoli, A.
    Bottari, S. P.
    Brito, P. M.
    Carrara, G.
    Casas, A. I.
    Chatzi, A.
    Chondrogiannni, N.
    Conrad, M.
    Cooke, M. S.
    Costa, J. G.
    Cuadrado, A.
    Dang, P. My-Chan
    De Smet, B.
    Debelec-Butuner, B.
    Dias, I. H. K.
    Dunn, J. D.
    Edson, A. J.
    El Assar, M.
    El-Benna, J.
    Ferdinandy, P.
    Fernandes, A. S.
    Fladmark, K. E.
    Foerstermann, U.
    [J]. REDOX BIOLOGY, 2018, 14 : 694 - 696