A holographic model for quantum critical responses

被引:25
作者
Myers, Robert C. [1 ]
Sierens, Todd [1 ,2 ,3 ]
Witczak-Krempa, William [4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Guelph Waterloo Phys Inst, Waterloo, ON N2L 3G1, Canada
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2016年 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence; Holography and condensed matter physics (AdS/CMT); FIELD-THEORIES; DYNAMICS; HAIR;
D O I
10.1007/JHEP05(2016)073
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the dynamical response functions of strongly interacting quantum critical states described by conformal field theories (CFTs). We construct a self-consistent holographic model that incorporates the relevant scalar operator driving the quantum critical phase transition. Focusing on the finite temperature dynamical conductivity sigma(omega, T), we study its dependence on our model parameters, notably the scaling dimension of the relevant operator. It is found that the conductivity is well-approximated by a simple ansatz proposed in [1] for a wide range of parameters. We further dissect the conductivity at large frequencies omega >> T using the operator product expansion, and show how it reveals the spectrum of our model CFT. Our results provide a physically-constrained framework to study the analytic continuation of quantum Monte Carlo data, as we illustrate using the O(2) Wilson-Fisher CFT. Finally, we comment on the variation of the conductivity as we tune away from the quantum critical point, setting the stage for a comprehensive analysis of the phase diagram near the transition.
引用
收藏
页数:37
相关论文
共 50 条
[21]   A holographic quantum Hall model at integer filling [J].
Niko Jokela ;
Matti Järvinen ;
Matthew Lippert .
Journal of High Energy Physics, 2011
[22]   Quantum critical lines in holographic phases with (un)broken symmetry [J].
Gouteraux, B. ;
Kiritsis, E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04)
[23]   A holographic model for the fractional quantum Hall effect [J].
Matthew Lippert ;
René Meyer ;
Anastasios Taliotis .
Journal of High Energy Physics, 2015
[24]   A holographic quantum Hall model at integer filling [J].
Jokela, Niko ;
Jaervinen, Matti ;
Lippert, Matthew .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05)
[25]   A holographic model for the fractional quantum Hall effect [J].
Lippert, Matthew ;
Meyer, Rene ;
Taliotis, Anastasios .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01) :1-81
[26]   A novel holographic quantum phase transition and butterfly velocity [J].
Fu, Guoyang ;
Wang, Xi-Jing ;
Liu, Peng ;
Zhang, Dan ;
Kuang, Xiao-Mei ;
Wu, Jian-Pin .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
[27]   Holographic Kondo model in various dimensions [J].
Benincasa, Paolo ;
Ramallo, Alfonso V. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06)
[28]   Axion monodromy in a model of holographic gluodynamics [J].
Dubovsky, Sergei ;
Lawrence, Albion ;
Roberts, Matthew M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02)
[29]   Holographic quantum entanglement negativity [J].
Pankaj Chaturvedi ;
Vinay Malvimat ;
Gautam Sengupta .
Journal of High Energy Physics, 2018
[30]   Quantum quenches of holographic plasmas [J].
Buchel, Alex ;
Lehner, Luis ;
Myers, Robert C. ;
van Niekerk, Anton .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)