Nucleation of metastable aragonite CaCO3 in seawater

被引:226
作者
Sun, Wenhao [1 ]
Jayaraman, Saivenkataraman [1 ]
Chen, Wei [2 ]
Persson, Kristin A. [2 ]
Ceder, Gerbrand [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
nucleation; calcium carbonate; polymorphism; surface energy; solid solution-aqueous solution equilibria; ENERGY CALCULATIONS; AB-INITIO; CALCITE; CRYSTALLIZATION; MAGNESIUM; THERMODYNAMICS; CLUSTERS; GROWTH; PRECIPITATION; DISSOLUTION;
D O I
10.1073/pnas.1423898112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"-the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite-which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg-Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.
引用
收藏
页码:3199 / 3204
页数:6
相关论文
共 58 条
[1]  
[Anonymous], NEUES JB MINERAL
[2]  
[Anonymous], 1897, Z. f.ur. Physikalische Chem. Bd, DOI DOI 10.1515/ZPCH-1897-2233
[3]  
Balluffi RW, 2005, KINETICS OF MATERIALS, P1
[4]  
Baumgartner J, 2013, NAT MATER, V12, P310, DOI [10.1038/NMAT3558, 10.1038/nmat3558]
[5]   Control of crystal phase switching and orientation by soluble mollusc-shell proteins [J].
Belcher, AM ;
Wu, XH ;
Christensen, RJ ;
Hansma, PK ;
Stucky, GD ;
Morse, DE .
NATURE, 1996, 381 (6577) :56-58
[6]   Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids [J].
Bentov, Shmuel ;
Weil, Simy ;
Glazer, Lilah ;
Sagi, Amir ;
Berman, Amir .
JOURNAL OF STRUCTURAL BIOLOGY, 2010, 171 (02) :207-215
[7]   ROLE OF MAGNESIUM IN CRYSTAL-GROWTH OF CALCITE AND ARAGONITE FROM SEA-WATER [J].
BERNER, RA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1975, 39 (04) :489-&
[8]   Dissolution enthalpies of magnesian calcites [J].
Bischoff, WD .
AQUATIC GEOCHEMISTRY, 1998, 4 (3-4) :321-336
[9]   Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC) [J].
Bots, Pieter ;
Benning, Liane G. ;
Rodriguez-Blanco, Juan-Diego ;
Roncal-Herrero, Teresa ;
Shaw, Samuel .
CRYSTAL GROWTH & DESIGN, 2012, 12 (07) :3806-3814
[10]   WHAT FACTORS DETERMINE CATION COORDINATION NUMBERS [J].
BROWN, ID .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1988, 44 :545-553