Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem

被引:13
作者
Zhang, Jian [1 ]
Zou, Wenming [2 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 03期
关键词
Kirchhoff-type problem; Critical growth; Variational method; NONLINEAR SCHRODINGER-EQUATIONS; GROUND-STATE SOLUTIONS; BOUND-STATES; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; SEMICLASSICAL STATES; NODAL SOLUTIONS; EXISTENCE; R-3; POTENTIALS;
D O I
10.1007/s00033-017-0803-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiplicity and concentration phenomenon of positive solutions to the critical Kirchhoff-type problem: -(epsilon(2)a + epsilon b integral(R3) vertical bar del u vertical bar(2)dx)Delta u + V(x)u = f(u) + h(x)u(5) in R-3 where epsilon is a small positive parameter, a, b are positive constants, V is an element of C(R-3, R) is a positive potential, f is an element of C-1(R+, R) is a subcritical nonlinear term, h(x)u(5) is a critical nonlinearity. When epsilon > 0 small, we establish the relationship between the number of positive solutions and the profile of V and h. The concentration behavior and some further properties of positive solutions are also obtained.
引用
收藏
页数:27
相关论文
共 34 条
[1]   Bending and stretching energies in a rectangular plate modeling suspension bridges [J].
Al-Gwaiz, Mohammed ;
Benci, Vieri ;
Gazzola, Filippo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 106 :18-34
[2]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[3]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[4]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[5]  
[Anonymous], 1883, Mechanik
[6]  
[Anonymous], 1997, Minimax theorems
[7]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[8]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200
[9]   Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R(N) [J].
Cao, DM ;
Noussair, ES .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :567-588
[10]   The effect of concentrating potentials in some singularly perturbed problems [J].
Cerami, G ;
Passaseo, D .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (03) :257-281