A Note on Closedness and Connectedness in the Category of Proximity Spaces

被引:14
作者
Kula, Muammer [1 ]
Marasli, Tugba [1 ]
Ozkan, Samed [1 ]
机构
[1] Erciyes Univ, Dept Math, Kayseri, Turkey
关键词
topological category; proximity space; separation; closedness; connectedness; CLOSURE OPERATORS; TOPOLOGICAL-CATEGORIES; SEPARATION PROPERTIES; CONVERGENCE SPACES; COMPACTNESS; OBJECTS;
D O I
10.2298/FIL1407483K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an explicit characterization of the separation properties T-0 and T-1 at a point p is given in the topological category of proximity spaces. Furthermore, the (strongly) closed and (strongly) open subobjects of an object are characterized in the category of proximity spaces and also the characterization of each of the various notions of the connected objects in this category are given.
引用
收藏
页码:1483 / 1492
页数:10
相关论文
共 37 条
[1]  
Adamek J., 1990, ABSTRACT CONCRETE CA
[2]  
Arhangel'skii V. A., 1975, GEN TOPOL APPL, V5, P9
[3]  
Baran M, 2006, PUBL MATH-DEBRECEN, V68, P489
[4]  
BARAN M, 1992, INDIAN J PURE AP MAT, V23, P333
[5]   Closure operators in convergence spaces [J].
Baran, M .
ACTA MATHEMATICA HUNGARICA, 2000, 87 (1-2) :33-45
[6]  
Baran M, 1997, PUBL MATH-DEBRECEN, V50, P221
[7]   Compactness, perfectness, separation, minimality and closedness with respect to closure operators [J].
Baran, M .
APPLIED CATEGORICAL STRUCTURES, 2002, 10 (04) :403-415
[8]   Completely regular objects and normal objects in topological categories [J].
Baran, M .
ACTA MATHEMATICA HUNGARICA, 1998, 80 (03) :211-224
[9]  
BARAN M, 1994, INDIAN J PURE AP MAT, V25, P615
[10]  
Baran M., 1996, MATH BALKANICA, V10, P39