Investigating Intrinsically Disordered Proteins With Brownian Dynamics

被引:4
|
作者
Ahn, Surl-Hee [1 ]
Huber, Gary A. [1 ,2 ]
McCammon, J. Andrew [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
Brownian dynamics simulation; molecular associations; intrinsically disordered proteins; COFFDROP force field; Browndye; MOLECULAR-DYNAMICS; SALT BRIDGES; ZINC-BINDING; FORCE-FIELD; SIMULATIONS; ALPHA; ASSOCIATION; STABILIZATION; DIFFUSION; PEPTIDES;
D O I
10.3389/fmolb.2022.898838
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsically disordered proteins (IDPs) have recently become systems of great interest due to their involvement in modulating many biological processes and their aggregation being implicated in many diseases. Since IDPs do not have a stable, folded structure, however, they cannot be easily studied with experimental techniques. Hence, conducting a computational study of these systems can be helpful and be complementary with experimental work to elucidate their mechanisms. Thus, we have implemented the coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs using Brownian dynamics (BD) simulations, which are often used to study large-scale motions with longer time scales and diffusion-limited molecular associations. Specifically, we have checked our COFFDROP implementation with eight naturally occurring IDPs and have investigated five (Glu-Lys)(25) IDP sequence variants. From measuring the hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor of 0.786 for non-bonded interactions. We have also measured the entanglement indices (average C-alpha distances to the other chain) between two (Glu-Lys)(25) IDP sequence variants, a property related to molecular association. We found that entanglement indices decrease for all possible pairs at excess salt concentration, which is consistent with long-range interactions of these IDP sequence variants getting weaker at increasing salt concentration.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Intrinsically Disordered Proteins: An Overview
    Trivedi, Rakesh
    Nagarajaram, Hampapathalu Adimurthy
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [22] Druggability of Intrinsically Disordered Proteins
    Joshi, Priyanka
    Vendruscolo, Michele
    INTRINSICALLY DISORDERED PROTEINS STUDIED BY NMR SPECTROSCOPY, 2015, 870 : 383 - 400
  • [23] Databases for intrinsically disordered proteins
    Piovesan, Damiano
    Monzon, Alexander Miguel
    Quaglia, Federica
    Tosatto, Silvio C. E.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 144 - 151
  • [24] Transient knots in intrinsically disordered proteins and neurodegeneration
    Cieplak, Marek
    Chwastyk, Mateusz
    Mioduszewski, Lukasz
    de Aquino, Belisa R. H.
    DANCING PROTEIN CLOUDS: INTRINSICALLY DISORDERED PROTEINS IN HEALTH AND DISEASE, PT B, 2020, 174 : 79 - 103
  • [25] Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning
    Aupic, Jana
    Pokorna, Pavlina
    Ruthstein, Sharon
    Magistrato, Alessandra
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (32): : 8177 - 8186
  • [26] Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins
    Wang, Wenning
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (02) : 777 - 784
  • [27] Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder
    Zhu, Jun-Jie
    Zhang, Ning-Jie
    Wei, Ting
    Chen, Hai-Feng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [28] Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry
    Abyzov, Anton
    Blackledge, Martin
    Zweckstetter, Markus
    CHEMICAL REVIEWS, 2022, 122 (06) : 6719 - 6748
  • [29] Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions
    Coskuner-Weber, Orkid
    Uversky, Vladimir N.
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2024, 25 (02) : 163 - 171
  • [30] Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions
    Saikia, Bondeepa
    Baruah, Anupaul
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2024, 752