Stern-Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms

被引:27
作者
Sun, Yu-Peng [1 ]
Yang, Chun-Tian [2 ]
Yang, Chun-Guang [3 ]
Xu, Da-Ke [2 ]
Li, Qi [1 ]
Yin, Lu [3 ]
Qiu, Cheng-Shuo [2 ]
Liu, Dan [2 ]
Yang, Ke [3 ]
机构
[1] Liaoning Univ, Coll Chem, Shenyang 110036, Liaoning, Peoples R China
[2] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Liaoning, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
X80 pipeline steel; Stern-Geary constant; Corrosion rate; Microbiologically influenced corrosion; Biofilm; MICROBIOLOGICALLY INFLUENCED CORROSION; DUPLEX STAINLESS-STEEL; SULFATE-REDUCING BACTERIA; CHLORIDE THRESHOLD VALUE; PSEUDOMONAS-AERUGINOSA; CARBON-STEEL; ELECTRON-TRANSFER; ALLOY COATINGS; BEHAVIOR; RESISTANCE;
D O I
10.1007/s40195-019-00902-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The Stern-Geary constant (B value) is indispensable to measure the corrosion rate in the microbiologically influenced corrosion (MIC) systems. Linear polarization resistance (LPR) and weight loss methods were used to study the variation of B values for X80 pipeline steel in the presence of Pseudomonas aeruginosa, Acetobacter aceti and Desulfovibrio vulgaris. The results showed that B values in the presence of three different bacteria were 35.60 +/- 0.55 mV, 33.00 +/- 1.00 mV and 58.60 +/- 0.55 mV, respectively, suggesting that the change of corrosion system significantly affected the B values of X80 pipeline steel. This work further indicated that the determination of B values is necessary to accurately measure the MIC rate by LPR method.
引用
收藏
页码:1483 / 1489
页数:7
相关论文
共 61 条
[1]   Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm [J].
Abdoli, Leila ;
Huang, Jing ;
Li, Hua .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 173 :62-69
[2]   A SIMPLE ARRANGEMENT AND PROCEDURE FOR IN-SITU MEASUREMENT OF CORROSION RATE OF REBAR EMBEDDED IN CONCRETE [J].
AHMAD, S ;
BHATTACHARJEE, B .
CORROSION SCIENCE, 1995, 37 (05) :781-791
[3]   Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J].
AlAbbas, Faisal M. ;
Williamson, Charles ;
Bhola, Shaily M. ;
Spear, John R. ;
Olson, David L. ;
Mishra, Brajendra ;
Kakpovbia, Anthony E. .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2013, 78 :34-42
[4]   QUANTITATIVE MEASUREMENTS OF CORROSION RATE OF REINFORCING STEELS EMBEDDED IN CONCRETE USING POLARIZATION RESISTANCE MEASUREMENTS [J].
ANDRADE, C ;
GONZALEZ, JA .
WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1978, 29 (08) :515-519
[5]   Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt.% NaCl media [J].
Bao, Qi ;
Zhang, Dun ;
Lv, Dandan ;
Wang, Peng .
CORROSION SCIENCE, 2012, 65 :405-413
[6]   Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J].
Batmanghelich, Farhad ;
Li, Lei ;
Seo, Youngwoo .
CORROSION SCIENCE, 2017, 121 :94-104
[7]   Welded, sandblasted, stainless steel corrugated bars in non-carbonated and carbonated mortars: A 9-year corrosion study [J].
Bautista, A. ;
Paredes, E. C. ;
Alvarez, S. M. ;
Velasco, F. .
CORROSION SCIENCE, 2016, 102 :363-372
[8]   Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers [J].
Boinovich, L. B. ;
Gnedenkov, S. V. ;
Alpysbaeva, D. A. ;
Egorkin, V. S. ;
Emelyanenko, A. M. ;
Sinebryukhov, S. L. ;
Zaretskaya, A. K. .
CORROSION SCIENCE, 2012, 55 :238-245
[9]   The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution [J].
Cao, Fengting ;
Wei, Jie ;
Dong, Junhua ;
Ke, Wei .
CORROSION SCIENCE, 2015, 100 :365-376
[10]   Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J].
Cetin, Demet ;
Aksu, Mehmet Levent .
CORROSION SCIENCE, 2009, 51 (08) :1584-1588