On Lp Liouville Theorems for Dirichlet Forms

被引:2
作者
Hua, Bobo [1 ,2 ]
Keller, Matthias [3 ]
Lenz, Daniel [4 ]
Schmidt, Marcel [5 ]
机构
[1] Fudan Univ, LMNS, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus,2005 Songhu Rd, Shanghai 200438, Peoples R China
[3] Univ Potsdam, Inst Math, D-14476 Potsdam, Germany
[4] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
[5] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
来源
DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022) | 2022年 / 394卷
关键词
Dirichlet forms; Liouville property; Superharmonic functions; HARMONIC-FUNCTIONS;
D O I
10.1007/978-981-19-4672-1_12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study harmonic functions for general Dirichlet forms. First we review consequences of Fukushima's ergodic theorem for the harmonic functions in the domain of the L-p generator. Secondly we prove analogues of Yau's and Karp's Liouville theorems for weakly harmonic functions. Both say that weakly harmonic functions which satisfy certain L-p growth criteria must be constant. As consequence we give an integral criterion for recurrence.
引用
收藏
页码:201 / 221
页数:21
相关论文
共 16 条
[1]  
[Anonymous], 2011, De Gruyter Studies in Mathematics
[2]  
Cauchy A.-L, 1989, ANALYSE ALGEBRIQUE C
[3]  
Davies E.B., 1989, CAMBRIDGE TRACTS MAT, V92
[4]  
Dellacherie C., 1980, Actualites Scientifiques et Industrielles, V1385
[5]   Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory [J].
Frank, Rupert L. ;
Lenz, Daniel ;
Wingert, Daniel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :4765-4808
[6]  
FUKUSHIMA M, 1982, LECT NOTES PHYS, V173, P200
[7]   L q harmonic functions on graphs [J].
Hua, Bobo ;
Jost, Juergen .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 202 (01) :475-490
[8]   Harmonic functions of general graph Laplacians [J].
Hua, Bobo ;
Keller, Matthias .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) :343-362
[9]  
Kajino N., 2017, Mat. Fiz. Kompyut. Model., V3, P89
[10]   SUB-HARMONIC FUNCTIONS ON REAL AND COMPLEX-MANIFOLDS [J].
KARP, L .
MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (04) :535-554