Plasma Biomarkers in Predicting Renal Recovery from Acute Kidney Injury in Critically Ill Patients

被引:14
作者
Fiorentino, Marco [1 ,2 ]
Tohme, Fadi A. [1 ]
Murugan, Raghavan [1 ,3 ]
Kellum, John A. [1 ,3 ]
机构
[1] Univ Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
[2] Univ Bari, Nephrol Dialysis & Transplantat Unit, Dept Emergency & Organ Transplantat, Bari, Italy
[3] Univ Pittsburgh, Dept Crit Care Med, CRISMA Ctr, Pittsburgh, PA 15213 USA
关键词
Acute kidney injury; Biomarkers; Renal recovery; Renal replacement therapy; Neutrophil gelatinase-associated lipocalin; GELATINASE-ASSOCIATED LIPOCALIN; NATRIURETIC PEPTIDE; GRAFT FUNCTION; CYSTATIN C; FAILURE; SEPSIS; RESUSCITATION; SCORE; NGAL; AKI;
D O I
10.1159/000500423
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Numerous studies have suggested a possible role for acute kidney injury (AKI) biomarkers in predicting renal recovery both before and after renal replacement therapy (RRT). However, definitions for recovery and whether to include patients dying but free of RRT may influence results. Objectives: To validate plasma neutrophil gelatinase-associated lipocalin (pNGAL) as a useful biomarker for predicting or improving the ability of clinical predictors alone to predict recovery following AKI, including in our model plasma B-type natriuretic peptide (pBNP) to account for cardiovascular events. Methods: We analyzed 69 patients enrolled in the Acute Renal Failure Trial Network study. pNGAL and pBNP were measured on days 2, 7, and 14. We analyzed their predictive ability for subsequent recovery, defined as alive and independent from dialysis in 60 days. In sensitivity analyses, we explored changes in results with alternative definitions of recovery. Results: Twenty-nine patients (42%) recovered from AKI. Neither pNGAL nor pBNP, alone or in combination, was accurate predictors of renal recovery-the best area under the receiver-operating characteristics curve (AUC) was for pNGAL using the largest relative change (AUC 0.59, 95% CI 0.45-0.74). The best clinical model achieved superior performance to biomarkers (AUC 0.69, 95% CI 0.56-0.81). The AUC was greatest (0.75, 95% CI 0.60-0.91) when pNGAL + pBNP on day 14 were added to the clinical model but this increase did not achieve statistical significance. However, integrated discrimination improvement analysis showed that the addition of pNGAL and pBNP on day 14 to the clinical model significantly improved the prediction of renal recovery (p = 0.008). Conclusions: pNGAL and pBNP can improve the accuracy of clinical parameters in predicting AKI recovery and a full model using biomarkers together with age achieved adequate discrimination.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 34 条
[1]   Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication [J].
Bihorac, Azra ;
Chawla, Lakhmir S. ;
Shaw, Andrew D. ;
Al-Khafaji, Ali ;
Davison, Danielle L. ;
DeMuth, George E. ;
Fitzgerald, Robert ;
Gong, Michelle Ng ;
Graham, Derrel D. ;
Gunnerson, Kyle ;
Heung, Michael ;
Jortani, Saeed ;
Kleerup, Eric ;
Koyner, Jay L. ;
Krell, Kenneth ;
LeTourneau, Jennifer ;
Lissauer, Matthew ;
Miner, James ;
Nguyen, H. Bryant ;
Ortega, Luis M. ;
Self, Wesley H. ;
Sellman, Richard ;
Shi, Jing ;
Straseski, Joely ;
Szalados, James E. ;
Wilber, Scott T. ;
Walker, Michael G. ;
Wilson, Jason ;
Wunderink, Richard ;
Zimmerman, Janice ;
Kellum, John A. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189 (08) :932-939
[2]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[3]   Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup [J].
Chawla, Lakhmir S. ;
Bellomo, Rinaldo ;
Bihorac, Azra ;
Goldstein, Stuart L. ;
Siew, Edward D. ;
Bagshaw, Sean M. ;
Bittleman, David ;
Cruz, Dinna ;
Endre, Zoltan ;
Fitzgerald, Robert L. ;
Forni, Lui ;
Kane-Gill, Sandra L. ;
Hoste, Eric ;
Koyner, Jay ;
Liu, Kathleen D. ;
Macedo, Etienne ;
Mehta, Ravindra ;
Murray, Patrick ;
Nadim, Mitra ;
Ostermann, Marlies ;
Palevsky, Paul M. ;
Pannu, Neesh ;
Rosner, Mitchell ;
Wald, Ron ;
Zarbock, Alexander ;
Ronco, Claudio ;
Kellum, John A. .
NATURE REVIEWS NEPHROLOGY, 2017, 13 (04) :241-257
[4]   Association between AKI and Long-Term Renal and Cardiovascular Outcomes in United States Veterans [J].
Chawla, Lakhmir S. ;
Amdur, Richard L. ;
Shaw, Andrew D. ;
Faselis, Charles ;
Palant, Carlos E. ;
Kimmel, Paul L. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2014, 9 (03) :448-456
[5]   Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review [J].
Coca, S. G. ;
Yalavarthy, R. ;
Concato, J. ;
Parikh, C. R. .
KIDNEY INTERNATIONAL, 2008, 73 (09) :1008-1016
[6]   Long-Term Follow-up of Acute Kidney Injury [J].
Doyle, James F. ;
Forni, Lui G. .
CRITICAL CARE CLINICS, 2015, 31 (04) :763-+
[7]   Foreword [J].
Eckardt, Kai-Uwe ;
Kasiske, Bertram L. .
KIDNEY INTERNATIONAL SUPPLEMENTS, 2012, 2 (01) :7-7
[8]   Recovery from Acute Kidney Injury: The Role of Biomarkers [J].
Endre, Zoltan H. .
NEPHRON CLINICAL PRACTICE, 2014, 127 (1-4) :101-105
[9]   Clinical Determinants of Renal Recovery [J].
Godin, Melanie ;
Macedo, Etienne ;
Mehta, Ravindra L. .
NEPHRON CLINICAL PRACTICE, 2014, 127 (1-4) :25-29
[10]   Renal recovery [J].
Goldstein, Stuart L. ;
Chawla, Lakhmir ;
Ronco, Claudio ;
Kellum, John A. .
CRITICAL CARE, 2014, 18 (01)