Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics

被引:576
作者
Jovel, Juan [1 ]
Patterson, Jordan [1 ]
Wang, Weiwei [1 ]
Hotte, Naomi [1 ]
O'Keefe, Sandra [1 ]
Mitchel, Troy [1 ]
Perry, Troy [1 ]
Kao, Dina [1 ]
Mason, Andrew L. [1 ]
Madsen, Karen L. [1 ]
Wong, Gane K-S [1 ,2 ,3 ]
机构
[1] Univ Alberta, Dept Med, Edmonton, AB, Canada
[2] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
[3] BGI Shenzhen, Shenzhen, Peoples R China
关键词
gut microbiome; 16S rRNA gene sequencing; shotgun metagenomics; bioinformatics; taxonomic classification; diversity analysis; functional profiling; INFLAMMATORY-BOWEL-DISEASE; RNA GENE DATABASE; FECAL MICROBIOTA; SYSTEMS BIOLOGY; BETA DIVERSITY; SEQUENCES; OBESITY; COMMUNITIES; ACCURATE; PROJECT;
D O I
10.3389/fmicb.2016.00459
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The advent of next generation sequencing (NGS) has enabled investigations of the gut microbiome with unprecedented resolution and throughput. This has stimulated the development of sophisticated bioinformatics tools to analyze the massive amounts of data generated. Researchers therefore need a clear understanding of the key concepts required for the design, execution and interpretation of NGS experiments on microbiomes. We conducted a literature review and used our own data to determine which approaches work best. The two main approaches for analyzing the microbiome, 16S ribosomal RNA (rRNA) gene amplicons and shotgun metaenomics, are illustarated with analyses of libraries designed to highlight their strengths and weaknesses. Several methods for taxonomic classification of bacterial sequences are discusses. We present simulations to assess the number of sequences that are required to perform reliable appraisals of bacterial community structure. To the extent that fluctuations in the diversity of gut bacterial populations correlate with health and disease, we emphasize various techniques for the analysis of bacterial communities within samples (alpha-diversity) and between samples (beta-diversity). Finally, we demonstrate techniques to infer the metabolic capabilities of a bacteria community from these 16S and shotgun data.
引用
收藏
页数:17
相关论文
共 139 条
[1]   Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome [J].
Abubucker, Sahar ;
Segata, Nicola ;
Goll, Johannes ;
Schubert, Alyxandria M. ;
Izard, Jacques ;
Cantarel, Brandi L. ;
Rodriguez-Mueller, Beltran ;
Zucker, Jeremy ;
Thiagarajan, Mathangi ;
Henrissat, Bernard ;
White, Owen ;
Kelley, Scott T. ;
Methe, Barbara ;
Schloss, Patrick D. ;
Gevers, Dirk ;
Mitreva, Makedonka ;
Huttenhower, Curtis .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
[2]  
Aho A.V., 1973, P 5 ANN ACM S THEOR, P253
[3]   Intestinal Dysbiosis and Depletion of Butyrogenic Bacteria in Clostridium difficile Infection and Nosocomial Diarrhea [J].
Antharam, Vijay C. ;
Li, Eric C. ;
Ishmael, Arif ;
Sharma, Anuj ;
Mai, Volker ;
Rand, Kenneth H. ;
Wang, Gary P. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (09) :2884-2892
[4]  
Aronesty E., 2011, COMMAND LINE TOOLS P
[5]   Obesity, fatty liver disease and intestinal microbiota [J].
Arslan, Nur .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (44) :16452-16463
[6]   Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy [J].
Bajaj, Jasmohan S. ;
Betrapally, Naga S. ;
Hylemon, Phillip B. ;
Heuman, Douglas M. ;
Daita, Kalyani ;
White, Melanie B. ;
Unser, Ariel ;
Thacker, Leroy R. ;
Sanyal, Arun J. ;
Kang, Dae Joong ;
Sikaroodi, Masoumeh ;
Gillevet, Patrick M. .
HEPATOLOGY, 2015, 62 (04) :1260-1271
[7]   Role of the Gut Microbiome in Obesity and Diabetes Mellitus [J].
Barlow, Gillian M. ;
Yu, Allen ;
Mathur, Ruchi .
NUTRITION IN CLINICAL PRACTICE, 2015, 30 (06) :787-797
[9]   Alzheimer's disease and the microbiome [J].
Bhattacharjee, Surjyadipta ;
Lukiw, Walter J. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2013, 7
[10]   Ray Meta: scalable de novo metagenome assembly and profiling [J].
Boisvert, Sebastien ;
Raymond, Frederic ;
Godzaridis, Elenie ;
Laviolette, Francois ;
Corbeil, Jacques .
GENOME BIOLOGY, 2012, 13 (12)