Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell

被引:115
作者
Han, Jianwei [1 ,2 ]
Wang, Kai [1 ,2 ]
Liu, Wenhao [1 ]
Li, Chen [1 ,2 ]
Sun, Xianzhong [1 ,2 ]
Zhang, Xiong [1 ,2 ]
An, Yabin [1 ]
Yi, Sha [1 ]
Ma, Yanwei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE; GRAPHENE OXIDE; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERY; ZINC; FABRICATION; FILMS; LIFE; NANOFIBERS; REDUCTION;
D O I
10.1039/c8nr03889a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we developed a novel Zn-ion hybrid cell based on a graphene-conducting polymer composite hydrogel (capacitor-type) cathode and a zinc metal (battery-type) anode. The pseudocapacitive-type cathode materials can effectively boost the capacity of Zn-ion hybrid cell compared to that of electrical double layer cathode materials. In particular, the composite hydrogel with rational designed three-dimensional (3D) nano-architecture combining 3D porous nanostructure with hydrogel, can significantly enlarge the active interfaces between the electrode and electrolyte. According to our experiments, the 3D graphene@PANI composite hydrogel electrode exhibits a large capacity of 154 mA h g(-1), a superior rate capability and excellent capacity retention of 80.5% after 6000 charge-discharge cycles in a Zn-ion hybrid cell. The outstanding electrochemical properties demonstrate that the 3D nanostructure composite hydrogel materials can effectively promote the material utilization, transport of charges, and reduce the degradation of conducting polymers, leading to a highly efficient, fast and stable electrochemical process. Based on our results, Zn-ion hybrid cells based on a composite hydrogel electrode could be an extremely promising candidate for next generation electrochemical energy storage devices.
引用
收藏
页码:13083 / 13091
页数:9
相关论文
共 54 条
[1]   Supercapacitor energy storage for wind energy applications [J].
Abbey, Chad ;
Joos, Geza .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2007, 43 (03) :769-776
[2]   Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Lim, Sung-Chul ;
Hong, Seung-Tae .
INORGANIC CHEMISTRY, 2016, 55 (07) :3294-3301
[3]   Research Progress and Prospect of Aqueous Zinc Ion Battery [J].
Chen Li-Neng ;
Yan Meng-Yu ;
Mei Zhi-Wen ;
Mai Li-Qiang .
JOURNAL OF INORGANIC MATERIALS, 2017, 32 (03) :225-234
[4]   Design and fabrication of functional hydrogels through interfacial engineering [J].
Chen, Lie ;
Yin, Yong-ai ;
Liu, Yu-xia ;
Lin, Ling ;
Liu, Ming-jie .
CHINESE JOURNAL OF POLYMER SCIENCE, 2017, 35 (10) :1181-1193
[5]   Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors [J].
Dong, Liubing ;
Ma, Xinpei ;
Li, Yang ;
Zhao, Ling ;
Liu, Wenbao ;
Cheng, Junye ;
Xu, Chengjun ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu .
ENERGY STORAGE MATERIALS, 2018, 13 :96-102
[6]   High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors [J].
Fan, Zhimin ;
Zhu, Jianpeng ;
Sun, Xinghui ;
Cheng, Zhongjun ;
Liu, Yuyan ;
Wang, Youshan .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21763-21772
[7]   Flexible Solid-State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte [J].
Feng, Lanxiang ;
Wang, Kai ;
Zhang, Xiong ;
Sun, Xianzhong ;
Li, Chen ;
Ge, Xingbo ;
Ma, Yanwei .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (04)
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte [J].
Guerfi, A. ;
Trottier, J. ;
Boyano, I. ;
De Meatza, I. ;
Blazquez, J. A. ;
Brewer, S. ;
Ryder, K. S. ;
Vijh, A. ;
Zaghib, K. .
JOURNAL OF POWER SOURCES, 2014, 248 :1099-1104
[10]   Improving the cycle life of a high-rate, high-potential aqueous dual ion battery using hyper-dendritic zinc and copper hexacyanoferrate [J].
Gupta, Tanya ;
Kim, Andrew ;
Phadke, Satyajit ;
Biswas, Shaurjo ;
Luong, Thao ;
Hertzberg, Benjamin J. ;
Chamoun, Mylad ;
Evans-Lutterodt, Kenneth ;
Steingart, Daniel A. .
JOURNAL OF POWER SOURCES, 2016, 305 :22-29