Prediction of Radio Frequency Spectrum Occupancy

被引:5
|
作者
Kyeremateng-Boateng, Hubert [1 ]
Conn, Marvin [2 ]
Josyula, Darsana [1 ]
Mareboyana, Manohar [1 ]
机构
[1] Bowie State Univ, Dept Comp Sci, Bowie, MD 20715 USA
[2] Army Res Lab, Computat & Informat Sci Directorate, Adelphi, MD USA
来源
2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020) | 2020年
关键词
Radio Frequency; Spectrum occupancy; Signal interference; Support Vector Regression; dynamic spectrum access; spectrum sensing; support vector machine; channel prediction;
D O I
10.1109/TrustCom50675.2020.00278
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As more users access the radio frequency (RF) spectrum for wireless communications, spectrum availability is becoming an increasingly scarce resource. Hence, the ability to detect or predict when a spectrum channel is available for use is of great importance. To support autonomous access to the spectrum band, we research two feature extraction techniques: (i) based on the standard energy calculation and (ii) based on cumulant calculations. We compare the performance of a baseline reactive predictor which projects the current time-step values to the next time-step, against linear support vector regression (SVR) based approaches using the aforementioned feature extraction techniques. We evaluate the occupancy state prediction in a spectrum band for different values of signal-to-noise ratio (SNR) and spectrum RF activity, using simulated RF signal data. Our experiments indicate that using first order cumulant based approach with SVR improves prediction accuracy.
引用
收藏
页码:2028 / 2034
页数:7
相关论文
共 50 条
  • [41] Enabling a Nationwide Radio Frequency Inventory Using the Spectrum Observatory
    Zheleva, Mariya Zhivkova
    Chandra, Ranveer
    Chowdhery, Aakanksha
    Garnett, Paul
    Gupta, Anoop
    Kapoor, Ashish
    Valerio, Matt
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (02) : 362 - 375
  • [42] A Digital Frequency Synthesizer for Cognitive Radio Spectrum Sensing Applications
    Rapinoja, Tapio
    Stadius, Kari
    Xu, Liangge
    Lindfors, Saska
    Kaunisto, Risto
    Parssinen, Aarno
    Ryynanen, Jussi
    RFIC: 2009 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, 2009, : 379 - +
  • [43] Genetic Algorithm-Holt-Winters Based Minute Spectrum Occupancy Prediction: An Investigation
    Surajudeen-Bakinde, Nazmat Toyin
    Ehiagwina, Frederick Ojiemhende
    Afolabi, Akindele Segun
    Usman, Ayinde Mohammed
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2022, 54 (06): : 1077 - 1100
  • [44] EVALUATION OF SPECTRUM OCCUPANCY IN URBAN AND RURAL ENVIRONMENTS OF ROMANIA
    Martian, Alexandru
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2014, 59 (01): : 87 - 96
  • [45] Channel-Hopping Blind Rendezvous for Cognitive Radio Networks using Channel Occupancy Prediction
    Lipski, Michael, V
    Narayanan, Ram M.
    RADAR SENSOR TECHNOLOGY XXIII, 2019, 11003
  • [46] Spectrum Occupancy Measurements and Analysis in 2.4 GHz WLAN
    Cheema, Adnan Ahmad
    Salous, Sana
    ELECTRONICS, 2019, 8 (09)
  • [47] Dynamic threshold Energy Detection based on spectrum prediction for cognitive radio
    Zhang, Q.
    Guo, J. K.
    Yu, Z. Y.
    Liu, G. B.
    ENERGY SCIENCE AND APPLIED TECHNOLOGY, 2016, : 469 - 472
  • [48] Contextual Neural-Network Based Spectrum Prediction for Cognitive Radio
    Huk, Maciej
    Mizera-Pietraszko, Jolanta
    2015 FOURTH INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION TECHNOLOGY (FGCT), 2015,
  • [49] Spectrum Prediction in Cognitive Radio Network Using Machine Learning Techniques
    Arivudainambi, D.
    Mangairkarasi, S.
    Kumar, K. A. Varun
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03) : 1525 - 1540
  • [50] An Article on Prediction Algorithm in Cognitive Radio Networks Using Spectrum Sensing
    Verma, Mona
    Baghel, Amit
    2020 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI - 2020), 2020, : 619 - 625