Finite element approximation of the pure Neumann problem using the iterative penalty method

被引:15
作者
Dai, Xiaoxia [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann problem; penalty method; iterative scheme; condition number;
D O I
10.1016/j.amc.2006.07.148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When we use penalty method to solve the pure Neumann problem, the associated stiffness matrix we get is ill-conditioned, which leads to the unstable computation. In this paper, we design an iterative penalty method for the problem and prove some error estimates. In our algorithm, we can use a not very small penalty parameter to avoid the unstable computation. Numerical examples are given to show the algorithm is very effective and powerful. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1367 / 1373
页数:7
相关论文
共 7 条
[1]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[2]   FINITE-ELEMENT APPROXIMATION OF THE DIRICHLET PROBLEM USING THE BOUNDARY PENALTY METHOD [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1986, 49 (04) :343-366
[3]   On the finite element solution of the pure Neumann problem [J].
Bochev, P ;
Lehoucq, RB .
SIAM REVIEW, 2005, 47 (01) :50-66
[4]   Analysis of the iterative penalty method for the Stokes equations [J].
Cheng, Xiao-liang ;
Shaikh, Abdul Wasim .
APPLIED MATHEMATICS LETTERS, 2006, 19 (10) :1024-1028
[5]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[6]   ON THE CONVERGENCE RATE OF THE BOUNDARY PENALTY METHOD [J].
SHI, ZC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (11) :2027-2032
[7]   BOUNDARY PENALTY TECHNIQUES [J].
UTKU, M ;
CAREY, GF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 30 (01) :103-118