Asymptotic Formulas for Thermography Based Recovery of Anomalies

被引:0
作者
Ammari, Habib [1 ]
Kozhemyak, Anastasia [2 ]
Volkov, Darko [3 ]
机构
[1] ESPCI, CNRS, Lab Ondes & Acoust, UMR 7587, F-75231 Paris 05, France
[2] Ecole Polytech, CNRS, Ctr Appl Math, UMR 7641, F-91128 Palaiseau, France
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
Thermography; imaging; asymptotic formulas; small anomalies; direct imaging algorithms; half-space problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We start from a realistic half space model for thermal imaging, which we then use to develop a mathematical asymptotic analysis well suited for the design of reconstruction algorithms. We seek to reconstruct thermal anomalies only through their rough features. With this way our proposed algorithms are stable against measurement noise and geometry perturbations. Based on rigorous asymptotic estimates, we first obtain an approximation for the temperature profile which we then use to design noniterative detection algorithms. We show on numerical simulations evidence that they are accurate and robust. Moreover, we provide a mathematical model for ultrasonic temperature imaging, which is an important technique in cancerous tissue ablation therapy
引用
收藏
页码:18 / 42
页数:25
相关论文
共 50 条
  • [1] Asymptotic Formulas for Thermography Based Recovery of Anomalies
    Habib Ammari
    Anastasia Kozhemyak
    Darko Volkov
    NumericalMathematics:Theory,MethodsandApplications, 2009, (01) : 18 - 42
  • [2] Asymptotic formulas for stacks and unimodal sequences
    Bringmann, Kathrin
    Mahlburg, Karl
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 194 - 215
  • [3] About asymptotic formulas for the inverse Radon transform
    Novikov, RG
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (08): : 659 - 673
  • [4] Asymptotic formulas for Dirichlet boundary value problems
    Yilmaz, B
    Veliev, OA
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (02) : 153 - 171
  • [5] On the asymptotic formulas along the Zl-extensions
    Jaulent, Jean-Francois
    Maire, Christian
    Perbet, Guillaume
    ANNALES MATHEMATIQUES DU QUEBEC, 2013, 37 (01): : 63 - 78
  • [6] Generalized elliptic-type integrals and asymptotic formulas
    Al-Zamel, A
    Tuan, VK
    Kalla, SL
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (01) : 13 - 25
  • [7] Asymptotic formulas for the diameter of sections of symmetric convex bodies
    Giannopoulos, A
    Milman, VD
    Tsolomitis, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 223 (01) : 86 - 108
  • [8] Facial Temperature Recovery After Ice Therapy: A Comparative Study Based on Thermography Evaluation
    Dionisio, Ana
    Roseiro, Luis
    Fonseca, Julio
    Margalho, Luis
    Nicolau, Pedro
    VIPIMAGE 2017, 2018, 27 : 225 - 233
  • [9] UNIFIED ELLIPTIC-TYPE INTEGRALS AND ASYMPTOTIC FORMULAS
    Chaurasia, V. B. L.
    Pandey, S. C.
    DEMONSTRATIO MATHEMATICA, 2008, 41 (03) : 531 - 541
  • [10] Asymptotic formulas for generalized elliptic-type integrals
    Kalla, SL
    Tuan, VK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (04) : 49 - 55