Inverse Scattering at Fixed Energy for Radial Magnetic Schrodinger Operators with Obstacle in Dimension Two

被引:2
|
作者
Gobin, Damien [1 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke South West, Montreal, PQ H3A 2K6, Canada
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 10期
关键词
POTENTIALS; EQUATION;
D O I
10.1007/s00023-018-0707-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an inverse scattering problem at fixed energy for radial magnetic Schr odinger operators on R2\ B(0, r0), where r0 is a positive and arbitrarily small radius. We assume that the magnetic potential A satisfies a gauge condition, and we consider the class C of smooth, radial and compactly supported electric potentials and magnetic fields denoted by V and B, respectively. If (V, B) and (V, B) are two couples belonging to C, we then show that if the corresponding phase shifts dl and dl (i. e., the scattering data at fixed energy) coincide for all l. L, where L. N satisfies the Muntz condition l. L 1 l = +8, then V (x) = V (x) and B(x) = B (x) outside the obstacle B(0, r0). The proof uses the complex angular momentum method and is close in spirit to the celebrated Borg-Marchenko uniqueness theorem.
引用
收藏
页码:3089 / 3128
页数:40
相关论文
共 29 条
  • [1] Local Inverse Scattering at a Fixed Energy for Radial Schrodinger Operators and Localization of the Regge Poles
    Daude, Thierry
    Nicoleau, Francois
    ANNALES HENRI POINCARE, 2016, 17 (10): : 2849 - 2904
  • [2] Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrodinger operator
    Fotopoulos, Georgios
    Serov, Valery
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (04) : 692 - 710
  • [3] Inverse Scattering for Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    ANNALES HENRI POINCARE, 2018, 19 (11): : 3397 - 3455
  • [4] DISPERSIVE ESTIMATES FOR SCHRODINGER OPERATORS IN DIMENSION TWO WITH OBSTRUCTIONS AT ZERO ENERGY
    Erdogan, M. Burak
    Green, William R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6403 - 6440
  • [5] Inverse scattering for the magnetic Schrodinger operator
    Paivarinta, Lassi
    Salo, Mikko
    Uhlmann, Gunther
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (07) : 1771 - 1798
  • [6] Inverse Transmission Problems for Magnetic Schrodinger Operators
    Krupchyk, Katsiaryna
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (01) : 65 - 164
  • [7] Inverse problems for radial Schrodinger operators with the missing part of eigenvalues
    Xu, Xin-Jian
    Yang, Chuan-Fu
    Yurko, Vjacheslav A.
    Zhang, Ran
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (08) : 1831 - 1848
  • [8] Inverse Scattering Problem for the High Order Schrodinger Operator at Fixed Angles Scattering Amplitude
    Huang, Hua
    Li, Huizhen
    Zhou, Zhigang
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1804 - 1820
  • [9] Inverse spectral problems for radial Schrodinger operators and closed systems
    Xu, Xin-Jian
    Yang, Chuan-Fu
    Bondarenko, Natalia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 343 - 368
  • [10] Inverse Problems for Magnetic Schrodinger Operators in Transversally Anisotropic Geometries
    Krupchyk, Katya
    Uhlmann, Gunther
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (02) : 525 - 582