Equivalent Quasi-Norms of Besov-Triebel-Lizorkin-Type Spaces via Derivatives

被引:6
|
作者
Wu, Suqing [1 ,2 ]
Yang, Dachun [1 ,2 ]
Yuan, Wen [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Morrey space; Peetre maximal function; Fourier multiplier; Lifting operator; DECOMPOSITIONS;
D O I
10.1007/s00025-017-0684-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, applying the Peetre maximal function characterizations and the boundedness of Fourier multipliers on Besov-type and Triebel-Lizorkin-type spaces, as well as Besov-Morrey and Triebel-Lizorkin-Morrey spaces, the authors present some equivalent quasi-norms of these spaces in terms of derivatives.
引用
收藏
页码:813 / 841
页数:29
相关论文
共 50 条
  • [31] Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type
    Fan Wang
    Ziyi He
    Dachun Yang
    Wen Yuan
    Communications in Mathematics and Statistics, 2022, 10 : 483 - 542
  • [32] 2-microlocal spaces associated with Besov type and Triebel-Lizorkin type spaces
    Saka, Koichi
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (03): : 923 - 962
  • [33] Homogeneous variable exponent Besov and Triebel-Lizorkin spaces
    Almeida, Alexandre
    Diening, Lars
    Hasto, Peter
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1177 - 1190
  • [34] Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
    Yang, DC
    POTENTIAL ANALYSIS, 2003, 19 (02) : 193 - 210
  • [35] Optimal embeddings for Triebel-Lizorkin and Besov spaces on quasi-metric measure spaces
    Alvarado, Ryan
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [36] Decomposition of Besov and Triebel-Lizorkin spaces on the sphere
    Narcowich, F.
    Petrushev, P.
    Ward, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 530 - 564
  • [37] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480
  • [38] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350
  • [39] Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels
    Liguang Liu
    Dachun Yang
    Wen Yuan
    Collectanea Mathematica, 2016, 67 : 247 - 310
  • [40] Generalized Besov-Morrey spaces and generalized Triebel-Lizorkin-Morrey spaces on domains
    Izuki, Mitsuo
    Noi, Takahiro
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) : 2212 - 2251