Lp-theory for some elliptic and parabolic problems with first order degeneracy at the boundary

被引:14
|
作者
Fornaro, Simona
Metafune, Giorgio
Pallara, Diego
Pruess, Jan
机构
[1] Univ Lecce, Dipartimento Matemat Ennio De Giorgi, I-73100 Lecce, Italy
[2] Univ Halle Wittenberg, FB Math & Informat, D-60120 Halle, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 87卷 / 04期
关键词
degenerate elliptic problems; analytic semigroups; maximal regularity;
D O I
10.1016/j.matpur.2007.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a smooth open bounded set in R-N, let rho be the (smoothed in the interior) distance function from partial derivative Omega let (a(ij)) be a uniformly elliptic matrix with continuous entries in Omega and A the associated second order elliptic operator. Under suitable conditions, we prove that the operator L = -rho A + B, with B a first order operator with continuous coefficients, with Dirichlet boundary conditions, generates an analytic semigroup in L-p(Omega), 1 < p < infinity, and in C((Omega) over bar). In L-p(Omega) we also give a precise description of the domain. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:367 / 393
页数:27
相关论文
共 50 条