Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells

被引:17
作者
Lee, Yeageun [1 ]
Park, Joonho [1 ]
Yu, Wonjong [1 ]
Tanveer, Waqas Hassan [1 ,2 ]
Lee, Yoon Ho [1 ]
Cho, Gu Young [1 ]
Park, Taehyun [1 ,3 ]
Zheng, Chunhua [4 ]
Lee, Wonyoung [5 ]
Cha, Suk Won [1 ,6 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Gwanak Ro 1, Seoul 08826, South Korea
[2] Natl Univ Sci & Technol, Sch Mech & Mfg Engn, Dept Mech Engn, H-12, Islamabad 44000, Pakistan
[3] Soongsil Univ, Dept Mech Engn, Sangdo Ro 369, Seoul 06978, South Korea
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[5] Sungkyunkwan Univ, Sch Mech Engn, Seobu Ro 2066, Suwon 16419, South Korea
[6] Inst Adv Machines & Design, Gwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Ni-YSZ; Bilayer anode; Thin film; Solid oxide fuel cell; ATOMIC LAYER DEPOSITION; PULSED-LASER DEPOSITION; IMPEDANCE SPECTROSCOPY; PERFORMANCE; SOFC; ELECTROLYTE; MICROSTRUCTURE; CERMETS; CATHODE; METALS;
D O I
10.1016/j.energy.2018.07.147
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, we investigate the possibility of using Ni-based anodes as alternatives to the Pt-based anodes for thin-film solid oxide fuel cells (SOFCs) operating at low temperatures. Anodes, electrolytes, and cathodes are sequentially sputtered onto a nanoporous substrate. The pure Ni anodes with modified nanostructures exhibit comparable performance as that of the optimized Pt anodes. Furthermore, a NilNi-YSZ bilayer anode fabricated via a co-sputtering method exhibits approximately 37% higher peak power density than does the optimized Pt anode at 500 degrees C, demonstrating that noble metal anodes can be replaced by Ni-based anodes in low-temperature SOFCs by optimizing the anode nanostructure. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1133 / 1138
页数:6
相关论文
共 47 条
[41]   Performance of Ni-Based Anode-Supported SOFCs with Doped Ceria Electrolyte at Low Temperatures Between 294 and 542°C [J].
Suzuki, Toshio ;
Liang, Bo ;
Yamaguchi, Toshiaki ;
Sumi, Hirofumi ;
Hamamoto, Koichi ;
Fujishiro, Yoshinobu ;
Sammes, Nigel M. .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2015, 12 (02) :358-362
[42]   WORK FUNCTION, ELECTRONEGATIVITY, AND ELECTROCHEMICAL BEHAVIOR OF METALS .3. ELECTROLYTIC HYDROGEN EVOLUTION IN ACID SOLUTIONS [J].
TRASATTI, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1972, 39 (01) :163-&
[43]   The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells [J].
Virkar, AV ;
Chen, J ;
Tanner, CW ;
Kim, JW .
SOLID STATE IONICS, 2000, 131 (1-2) :189-198
[44]   Effect of Ni content in SOFC Ni-YSZ cermets: A three-dimensional study by FIB-SEM tomography [J].
Vivet, N. ;
Chupin, S. ;
Estrade, E. ;
Richard, A. ;
Bonnamy, S. ;
Rochais, D. ;
Bruneton, E. .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :9989-9997
[45]   Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells [J].
Wagner, N ;
Schnurnberger, W ;
Muller, B ;
Lang, M .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3785-3793
[46]   Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure [J].
Yan, Dong ;
Liang, Lingjiang ;
Yang, Jiajun ;
Zhang, Tao ;
Pu, Jian ;
Chi, Bo ;
Li, Jian .
ENERGY, 2017, 125 :663-670
[47]  
Yu W., 2016, NANOTECHNOLOGY, V27