Early Detection of Alcohol Use Disorder Based on a Novel Machine Learning Approach Using EEG Data

被引:3
作者
Flathau, Dennis [1 ]
Breitenbach, Johannes [2 ]
Baumgartl, Hermann [1 ]
Buettner, Ricardo [2 ,3 ]
机构
[1] Aalen Univ, Aalen, Germany
[2] Univ Bayreuth, Bayreuth, Germany
[3] Fraunhofer FIT, Bayreuth, Germany
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
关键词
Medical analysis; alcoholism; EEG; machine learning; DRINKING; IDENTIFICATION; ARTIFACTS; POWER;
D O I
10.1109/BigData52589.2021.9671448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The consequences of alcohol use disorders affect around 17 million people in the United States. To prevent healthy people from developing an alcohol use disorder, early detection is achieved using different screening methods. However, these methods are mostly based on self-tests, which can be easily influenced by the subject. In order to prevent healthy people from developing an alcohol use disorder through their alcohol consumption, drinking behavior, and alcohol-related problems, we propose a novel machine learning approach. With this approach it is possible to classify healthy people with an accuracy of 69 percent based on EEG recordings in assessing the danger of developing an alcohol use disorder or not. To obtain this result, the frequency range of the EEG data used was divided into 99 fine bands. Using a machine learning algorithm, the five most important bands were identified.
引用
收藏
页码:3897 / 3904
页数:8
相关论文
共 45 条
[1]   Computer-aided diagnosis of alcoholism-related EEG signals [J].
Acharya, U. Rajendra ;
Vidya, S. ;
Bhat, Shreya ;
Adeli, Hojjat ;
Adeli, Amir .
EPILEPSY & BEHAVIOR, 2014, 41 :257-263
[2]  
Anderson P., 2012, ALCOHOL EUROPEAN UNI, P69
[3]   A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults [J].
Babayan, Anahit ;
Erbey, Miray ;
Kumral, Deniz ;
Reinelt, Janis D. ;
Reiter, Andrea M. F. ;
Roebbig, Josefin ;
Schaare, H. Lina ;
Uhlig, Marie ;
Anwander, Alfred ;
Bazin, Pierre-Louis ;
Horstmann, Annette ;
Lampe, Leonie ;
Nikulin, Vadim V. ;
Okon-Singer, Hadas ;
Preusser, Sven ;
Pampel, Andre ;
Rohr, Christiane S. ;
Sacher, Julia ;
Thoene-Otto, Angelika ;
Trapp, Sabrina ;
Nierhaus, Till ;
Altmann, Denise ;
Arelin, Katrin ;
Bloechl, Maria ;
Bongartz, Edith ;
Breig, Patric ;
Cesnaite, Elena ;
Chen, Sufang ;
Cozatl, Roberto ;
Czerwonatis, Saskia ;
Dambrauskaite, Gabriele ;
Dreyer, Maria ;
Enders, Jessica ;
Engelhardt, Melina ;
Fischer, Marie Michele ;
Forschack, Norman ;
Golchert, Johannes ;
Golz, Laura ;
Guran, C. Alexandrina ;
Hedrich, Susanna ;
Hentschel, Nicole ;
Hoffmann, Daria I. ;
Huntenburg, Julia M. ;
Jost, Rebecca ;
Kosatschek, Anna ;
Kunzendorf, Stella ;
Lammers, Hannah ;
Lauckner, Mark E. ;
Mahjoory, Keyvan ;
Kanaan, Ahmad S. .
SCIENTIFIC DATA, 2019, 6 (1)
[4]   Rapid Screening of Alcoholism: An EEG Based Optimal Channel Selection Approach [J].
Bavkar, Sandeep ;
Iyer, Brijesh ;
Deosarkar, Shankar .
IEEE ACCESS, 2019, 7 :99670-99682
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Breitenbach J., 2021, PACIS 2021 PROC, V2021, P1
[7]  
Buettner R., 2018, AIS Transactions on Human-Computer Interaction, V10, P26, DOI [DOI 10.17705/1THCI.00103, 10.17705/1thci.00103.]
[8]  
Buettner R, 2019, 40 INT C INF SYST MU, P1
[9]   A random forest model based classification scheme for neonatal amplitude-integrated EEG [J].
Chen, Weiting ;
Wang, Yu ;
Cao, Guitao ;
Chen, Guoqiang ;
Gu, Qiufang .
BIOMEDICAL ENGINEERING ONLINE, 2014, 13
[10]   Binge Drinking Effects on EEG in Young Adult Humans [J].
Courtney, Kelly E. ;
Polich, John .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2010, 7 (05) :2325-2336