Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning

被引:154
作者
Cha, Kenny H. [1 ]
Hadjiiski, Lubomir [1 ]
Chan, Heang-Ping [1 ]
Weizer, Alon Z. [2 ]
Alva, Ajjai [3 ]
Cohan, Richard H. [1 ]
Caoili, Elaine M. [1 ]
Paramagul, Chintana [1 ]
Samala, Ravi K. [1 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Urol, Comprehens Canc Ctr, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Hematol Oncol, Ann Arbor, MI 48109 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
COMPUTER-AIDED DETECTION; CONVOLUTIONAL NEURAL-NETWORK; CLUSTERED MICROCALCIFICATIONS; DETECTION SYSTEM; BREAST-CANCER; SEGMENTATION; DIAGNOSIS; UROGRAPHY; MASS; CLASSIFICATION;
D O I
10.1038/s41598-017-09315-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cross-sectional X-ray imaging has become the standard for staging most solid organ malignancies. However, for some malignancies such as urinary bladder cancer, the ability to accurately assess local extent of the disease and understand response to systemic chemotherapy is limited with current imaging approaches. In this study, we explored the feasibility that radiomics-based predictive models using pre- and post-treatment computed tomography (CT) images might be able to distinguish between bladder cancers with and without complete chemotherapy responses. We assessed three unique radiomics-based predictive models, each of which employed different fundamental design principles ranging from a pattern recognition method via deep-learning convolution neural network (DL-CNN), to a more deterministic radiomics feature-based approach and then a bridging method between the two, utilizing a system which extracts radiomics features from the image patterns. Our study indicates that the computerized assessment using radiomics information from the pre- and post-treatment CT of bladder cancer patients has the potential to assist in assessment of treatment response.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Samala, Ravi K. ;
Chan, Heang-Ping ;
Caoili, Elaine M. ;
Cohan, Richard H. .
MEDICAL PHYSICS, 2016, 43 (04) :1882-1896
[3]   COMPUTER-AIDED DETECTION OF MAMMOGRAPHIC MICROCALCIFICATIONS - PATTERN-RECOGNITION WITH AN ARTIFICIAL NEURAL-NETWORK [J].
CHAN, HP ;
LO, SCB ;
SAHINER, B ;
LAM, KL ;
HELVIE, MA .
MEDICAL PHYSICS, 1995, 22 (10) :1555-1567
[4]   Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers [J].
Chan, HP ;
Sahiner, B ;
Wagner, RF ;
Petrick, N .
MEDICAL PHYSICS, 1999, 26 (12) :2654-2668
[5]   Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: An ROC study [J].
Chan, HP ;
Sahiner, B ;
Helvie, MA ;
Petrick, N ;
Roubidoux, MA ;
Wilson, TE ;
Adler, DD ;
Paramagul, C ;
Newman, JS ;
Sanjay-Gopal, S .
RADIOLOGY, 1999, 212 (03) :817-827
[6]   MDCT Urography: Exploring a New Paradigm for Imaging of Bladder Cancer [J].
Cohan, Richard H. ;
Caoili, Elaine M. ;
Cowan, Nigel C. ;
Weizer, Alon Z. ;
Ellis, James H. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 192 (06) :1501-1508
[7]   Lung Texture in Serial Thoracic Computed Tomography Scans: Correlation of Radiomics-based Features With Radiation Therapy Dose and Radiation Pneumonitis Development [J].
Cunliffe, Alexandra ;
Armato, Samuel G., III ;
Castillo, Richard ;
Ngoc Pham ;
Guerrero, Thomas ;
Al-Hallaq, Hania A. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 91 (05) :1048-1056
[8]   CIS-DIAMMINEDICHLOROPLATINUM (DDP) AS INITIAL TREATMENT OF INVASIVE BLADDER-CANCER [J].
FAGG, SL ;
DAWSONEDWARDS, P ;
HUGHES, MA ;
LATIEF, TN ;
ROLFE, EB ;
FIELDING, JWL .
BRITISH JOURNAL OF UROLOGY, 1984, 56 (03) :296-300
[9]   Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis [J].
Filev, Peter ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Sahiner, Berkman ;
Ge, Jun ;
Helvie, Mark A. ;
Roubidoux, Marilyn ;
Zhou, Chuan .
MEDICAL PHYSICS, 2008, 35 (12) :5340-5350
[10]   Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms [J].
Ge, Jun ;
Hadjiiski, Lubomir M. ;
Sahiner, Berkman ;
Wei, Jun ;
Helvie, Mark A. ;
Zhou, Chuan ;
Chan, Heang-Ping .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (04) :981-1000