CO2 capture from natural gas combined cycles by CO2 selective membranes

被引:41
|
作者
Turi, D. M. [1 ]
Ho, M. [2 ]
Ferrari, M. C. [3 ]
Chiesa, P. [1 ]
Wiley, D. E. [2 ]
Romano, M. C. [1 ]
机构
[1] Politecn Milan, Dept Energy, Via Lambruschini 4, I-20156 Milan, Italy
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Edinburgh, Sch Engn, Robert Stevenson Rd, Edinburgh EH9 3FB, Midlothian, Scotland
关键词
CO2; membranes; Combined cycle; Carbon capture; CCS; Economic analysis; CARBON-DIOXIDE CAPTURE; POWER-PLANTS; POSTCOMBUSTION CAPTURE; THERMODYNAMIC ANALYSIS; SEPARATION; COST;
D O I
10.1016/j.ijggc.2017.03.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper performs a techno-economic analysis of natural gas-fired combined cycle (NGCC) power plants integrated with CO2 selective membranes for post-combustion CO2 capture. The configuration assessed is based on a two-membrane system: a CO2 capture membrane that separates the CO2 for final sequestration and a CO2 recycle membrane that selectively recycles CO2 to the gas turbine compressor inlet in order to increase the CO2 concentration in the gas turbine flue gas. Three different membrane technologies with different permeability and selectivity have been investigated. The mass and energy balances are calculated by integrating a power plant model, a membrane model and a CO2 purification unit model. An economic model is then used to estimate the cost of electricity and of CO2 avoided. A sensitivity analysis on the main process parameters and economic assumptions is also performed. It was found that a combination of a high permeability membrane with moderate selectivity as a recycle membrane and a very high selectivity membrane with high permeability used for the capture membrane resulted in the lowest CO2 avoided cost of 75 US$/tco(2). This plant features a feed pressure of 1.5 bar and a permeate pressure of 0.2 bar for the capture membrane. This result suggests that membrane systems can be competitive for CO2 capture from NGCC power plants when compared with MEA absorption. However, to achieve significant advantages with respect to benchmark MEA capture, better membrane permeability and lower costs are needed with respect to the state of the art technology. In addition, due to the selective recycle, the gas turbine operates with a working fluid highly enriched with CO2. This requires redesigning gas turbine components, which may represent a major challenge for commercial deployment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:168 / 183
页数:16
相关论文
共 50 条
  • [41] Selective-exhaust gas recirculation for CO2 capture using membrane technology
    Russo, Giuseppe
    Prpich, George
    Anthony, Edward J.
    Montagnaro, Fabio
    Jurado, Neila
    Di Lorenzo, Giuseppina
    Darabkhani, Hamidreza G.
    JOURNAL OF MEMBRANE SCIENCE, 2018, 549 : 649 - 659
  • [42] COMBINED CYCLES WITH CO2 CAPTURE: TWO ALTERNATIVES FOR SYSTEM INTEGRATION
    Sipocz, Nikolett
    Assadi, Mohsen
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 233 - 241
  • [43] Development of CO2 liquefaction cycles for CO2 sequestration
    Alabdulkarem, Abdullah
    Hwang, Yunho
    Radermacher, Reinhard
    APPLIED THERMAL ENGINEERING, 2012, 33-34 : 144 - 156
  • [44] Process Design Analyses of CO2 Capture from Natural Gas by Polymer Membrane
    Hussain, Arshad
    Nasir, Habib
    Ahsan, Muhammad
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2014, 36 (03): : 411 - 421
  • [45] Pre-combustion CO2 capture
    Jansen, Daniel
    Gazzani, Matteo
    Manzolini, Giampaolo
    van Dijk, Eric
    Carbo, Michiel
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 : 167 - 187
  • [46] Recent advances in polymeric membranes for CO2 capture
    Han, Yang
    Ho, W. S. Winston
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2238 - 2254
  • [47] Combined Cycles With CO2 Capture: Two Alternatives for System Integration
    Sipocz, Nikolett
    Assadi, Mohsen
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2010, 132 (06): : 1 - 8
  • [48] In silico screening of zeolite membranes for CO2 capture
    Krishna, Rajamani
    van Baten, Jasper M.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 360 (1-2) : 323 - 333
  • [49] Facilitated transport membranes for CO2 separation and capture
    Tong, Zi
    Ho, W. S. Winston
    SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (02) : 156 - 167
  • [50] Natural gas combined cycle with exhaust gas recirculation and CO2 capture at part-load operation
    Moises Alcaraz-Calderon, Agustin
    Ortencia Gonzalez-Diaz, Maria
    Mendez, Angel
    Miguel Gonzalez-Santalo, Jose
    Gonzalez-Diaz, Abigail
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (02) : 370 - 381