NAVIER-STOKES-OSEEN FLOWS IN THE EXTERIOR OF A ROTATING AND TRANSLATING OBSTACLE

被引:3
作者
Trinh Viet Duoc [1 ,2 ]
机构
[1] Vietnam Natl Univ, 334 Nguyen Trai, Hanoi, Vietnam
[2] Hanoi Univ Sci, Fac Math Mech & Informat, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Bounded and almost periodic weak mild solutions; time-local mild solutions; Navier-Stokes-Oseen equation; Navier-Stokes equation; Oseen operator; rotating and translating obstacle; TIME-PERIODIC SOLUTIONS; WEAK SOLUTIONS; RIGID-BODY; EQUATIONS; EXISTENCE; DOMAINS; REGULARITY; UNIQUENESS; STABILITY; OPERATOR;
D O I
10.3934/dcds.2018145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate Navier-Stokes-Oseen equation describing flows of incompressible viscous fluid passing a translating and rotating obstacle. The existence, uniqueness, and polynomial stability of bounded and almost periodic weak mild solutions to Navier-Stokes-Oseen equation in the solenoidal Lorentz space L-sigma,w(3) are shown. Moreover, we also prove the unique existence of time-local mild solutions to this equation in the solenoidal Lorentz spaces L-alpha(3,q).
引用
收藏
页码:3387 / 3405
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]   ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1995, 174 (02) :311-382
[3]   ON THE SEMIGROUP OF THE STOKES OPERATOR FOR EXTERIOR DOMAINS IN LQ-SPACES [J].
BORCHERS, W ;
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :415-425
[4]  
Castillo R. E., 2016, INTRO COURSE LEBESGU
[5]   Stationary navier-stokes flow around a rotating obstacle [J].
Farwig, Reinhard ;
Hishida, Toshiaki .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03) :371-403
[6]   The steady motion of a Navier-Stokes liquid around a rigid body [J].
Galdi, Giovanni P. ;
Silvestre, Ana L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 184 (03) :371-400
[7]   EXISTENCE AND UNIQUENESS OF TIME-PERIODIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN THE WHOLE PLANE [J].
Galdi, Giovanni P. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05) :1237-1257
[8]   On the Motion of a Rigid Body in a Navier-Stokes Liquid under the Action of a Time-Periodic Force [J].
Galdi, Giovanni P. ;
Silvestre, Ana L. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2805-2842
[9]   Existence of time-periodic solutions to the Navier-Stokes equations around a moving body [J].
Galdi, GP ;
Silvestre, AL .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 223 (02) :251-267
[10]   Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body [J].
Galdi, GP ;
Sohr, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) :363-406