Overcomplete ICA with a geometric algorithm

被引:0
作者
Theis, FJ [1 ]
Lang, EW
Westenhuber, T
Puntonet, CG
机构
[1] Univ Regensburg, Inst Biophys, D-93040 Regensburg, Germany
[2] Univ Granada, Dept Architecture & Comp Technol, Granada, Spain
来源
ARTIFICIAL NEURAL NETWORKS - ICANN 2002 | 2002年 / 2415卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an independent component analysis (ICA) algorithm based on geometric considerations [10] [11] to decompose a linear mixture of more sources than sensor signals. Bofill and Zibulevsky [2] recently proposed a two-step approach for the separation: first learn the mixing matrix, then recover the sources using a maximum-likelihood approach. We present an efficient method for the matrix-recovery step mimicking the standard geometric algorithm thus generalizing Bofill and Zibulevsky's method.
引用
收藏
页码:1049 / 1054
页数:6
相关论文
共 11 条
  • [1] Amari S, 1996, ADV NEUR IN, V8, P757
  • [2] BOFILL P, 2000, INT WORKSH IND COMP, P87
  • [3] CHEN S, 1996, ATOMIC DECOMPOSITION
  • [4] INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT
    COMON, P
    [J]. SIGNAL PROCESSING, 1994, 36 (03) : 287 - 314
  • [5] Development of low entropy coding in a recurrent network
    Harpur, GF
    Prager, RW
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1996, 7 (02) : 277 - 284
  • [6] JUNG A, 2001, IN PRESS ICA2001
  • [7] LEWICKI MS, 1998, NEURAL COMPUTATION
  • [8] OLSHAUSEN B, 1995, SPARSE CODING NATURA
  • [9] OLSHAUSEN BA, 1996, AIM1580
  • [10] SEPARATION OF SOURCES - A GEOMETRY-BASED PROCEDURE FOR RECONSTRUCTION OF N-VALUED SIGNALS
    PUNTONET, CG
    PRIETO, A
    JUTTEN, C
    RODRIGUEZALVAREZ, M
    ORTEGA, J
    [J]. SIGNAL PROCESSING, 1995, 46 (03) : 267 - 284